Other packages > Find by keyword >

clinicalsignificance  

A Toolbox for Clinical Significance Analyses in Intervention Studies
View on CRAN: Click here


Download and install clinicalsignificance package within the R console
Install from CRAN:
install.packages("clinicalsignificance")

Install from Github:
library("remotes")
install_github("cran/clinicalsignificance")

Install by package version:
library("remotes")
install_version("clinicalsignificance", "2.1.0")



Attach the package and use:
library("clinicalsignificance")
Maintained by
Benedikt Claus
[Scholar Profile | Author Map]
First Published: 2022-06-03
Latest Update: 2023-11-16
Description:
A clinical significance analysis can be used to determine if an intervention has a meaningful or practical effect for patients. You provide a tidy data set plus a few more metrics and this package will take care of it to make your results publication ready.
How to cite:
Benedikt Claus (2022). clinicalsignificance: A Toolbox for Clinical Significance Analyses in Intervention Studies. R package version 2.1.0, https://cran.r-project.org/web/packages/clinicalsignificance. Accessed 09 Apr. 2025.
Previous versions and publish date:
1.0.0 (2022-06-03 09:30), 1.2.0 (2022-12-08 13:50), 2.0.0 (2023-11-16 16:44)
Other packages that cited clinicalsignificance R package
View clinicalsignificance citation profile
Other R packages that clinicalsignificance depends, imports, suggests or enhances
Complete documentation for clinicalsignificance
Functions, R codes and Examples using the clinicalsignificance R package
Some associated functions: antidepressants . anxiety . anxiety_complete . augmented_data . calc_anchor.cs_anchor_group_between . calc_anchor.cs_anchor_group_within . calc_anchor.cs_anchor_individual_within . calc_anchor . calc_cutoff_from_data.cs_ha . calc_cutoff_from_data.default . calc_cutoff_from_data . calc_percentage . calc_rci.cs_en . calc_rci.cs_gln . calc_rci.cs_ha . calc_rci.cs_hll . calc_rci.cs_hlm . calc_rci.cs_jt . calc_rci.cs_nk . calc_rci . claus_2020 . create_summary_table.cs_anchor_individual_within . create_summary_table.cs_combined . create_summary_table.cs_distribution . create_summary_table.cs_percentage . create_summary_table.cs_statistical . create_summary_table . cs_anchor . cs_combined . cs_distribution . cs_get_cutoff . cs_get_cutoff_descriptives . cs_get_data . cs_get_model . cs_get_n . cs_get_reliability . cs_percentage . cs_statistical . generate_plotting_band.cs_anchor_individual_within . generate_plotting_band.cs_en . generate_plotting_band.cs_gln . generate_plotting_band.cs_ha . generate_plotting_band.cs_hll . generate_plotting_band.cs_jt . generate_plotting_band.cs_nk . generate_plotting_band.cs_percentage . generate_plotting_band . hechler_2014 . jacobson_1989 . plot.cs_anchor_group_between . plot.cs_anchor_group_within . plot.cs_anchor_individual_within . plot.cs_combined . plot.cs_distribution . plot.cs_percentage . plot.cs_statistical . print.cs_anchor_group_between . print.cs_anchor_group_within . print.cs_anchor_individual_within . print.cs_combined . print.cs_distribution . print.cs_percentage . print.cs_statistical . summary.cs_anchor_group_between . summary.cs_anchor_group_within . summary.cs_anchor_individual_within . summary.cs_combined . summary.cs_distribution . summary.cs_percentage . summary.cs_statistical . summary_table . 
Some associated R codes: calc_anchor.R . calc_cutoff.R . calc_percentage.R . calc_rci.R . calc_recovered.R . create_summary_table.R . cs_anchor.R . cs_combined.R . cs_distribution.R . cs_get_augmented_data.R . cs_get_cutoff.R . cs_get_cutoff_descriptives.R . cs_get_data.R . cs_get_model.R . cs_get_n.R . cs_get_reliability.R . cs_get_summary.R . cs_percentage.R . cs_statistical.R . datasets.R . generate_plotting_band.R . globals.R . package-utils.R . plot.R . prep_data.R .  Full clinicalsignificance package functions and examples
Downloads during the last 30 days
03/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/08Downloads for clinicalsignificance24681012141618TrendBars

Today's Hot Picks in Authors and Packages

MultSurvTests  
Permutation Tests for Multivariate Survival Analysis
Multivariate version of the two-sample Gehan and logrank tests, as described in L.J Wei & J.M Lachin ...
Download / Learn more Package Citations See dependency  
fisheye  
Transform Base Maps Using Log-Azimuthal Projection
Base maps are transformed to focus on a specific location using an azimuthal logarithmic distance t ...
Download / Learn more Package Citations See dependency  
mmb  
Arbitrary Dependency Mixed Multivariate Bayesian Models
Supports Bayesian models with full and partial (hence arbitrary) dependencies between random variab ...
Download / Learn more Package Citations See dependency  
prettyglm  
Pretty Summaries of Generalized Linear Model Coefficients
One of the main advantages of using Generalised Linear Models is their interpretability. The goal ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
cvmdisc  
Cramer von Mises Tests for Discrete or Grouped Distributions
Implements Cramer-von Mises Statistics for testing fit to (1) fully specified discrete distributions ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA