Other packages > Find by keyword >

brms  

Bayesian Regression Models using 'Stan'
View on CRAN: Click here


Download and install brms package within the R console
Install from CRAN:
install.packages("brms")

Install from Github:
library("remotes")
install_github("cran/brms")

Install by package version:
library("remotes")
install_version("brms", "2.22.0")



Attach the package and use:
library("brms")
Maintained by
Paul-Christian Bürkner
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-05-08
Latest Update: 2023-09-25
Description:
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: B
How to cite:
Paul-Christian Bürkner (2015). brms: Bayesian Regression Models using 'Stan'. R package version 2.22.0, https://cran.r-project.org/web/packages/brms. Accessed 31 Jan. 2025.
Previous versions and publish date:
0.1.0 (2015-05-08 11:47), 0.2.0 (2015-05-27 01:35), 0.3.0 (2015-06-29 16:41), 0.4.0 (2015-07-23 15:24), 0.4.1 (2015-08-03 00:20), 0.5.0 (2015-09-13 09:22), 0.6.0 (2015-11-14 00:06), 0.7.0 (2016-01-18 13:17), 0.8.0 (2016-02-15 23:59), 0.9.0 (2016-04-19 13:50), 0.9.1 (2016-05-17 21:13), 0.10.0 (2016-06-29 17:03), 1.0.0 (2016-09-15 03:00), 1.0.1 (2016-09-16 12:50), 1.1.0 (2016-10-11 23:53), 1.2.0 (2016-12-06 11:28), 1.3.0 (2016-12-20 00:55), 1.3.1 (2016-12-22 00:38), 1.4.0 (2017-01-27 18:47), 1.5.0 (2017-02-17 19:02), 1.5.1 (2017-02-26 19:56), 1.6.0 (2017-04-06 23:05), 1.6.1 (2017-04-17 15:54), 1.7.0 (2017-05-23 19:29), 1.8.0 (2017-07-20 21:53), 1.9.0 (2017-08-15 14:18), 1.10.0 (2017-09-09 23:51), 1.10.2 (2017-10-20 22:52), 2.0.0 (2017-12-15 13:58), 2.0.1 (2017-12-21 22:24), 2.1.0 (2018-01-23 22:48), 2.2.0 (2018-04-13 10:43), 2.3.0 (2018-05-14 17:47), 2.3.1 (2018-06-05 19:43), 2.4.0 (2018-07-20 23:50), 2.5.0 (2018-09-16 18:40), 2.6.0 (2018-10-23 12:40), 2.7.0 (2018-12-17 17:00), 2.8.0 (2019-03-15 10:13), 2.9.0 (2019-05-23 07:00), 2.10.0 (2019-08-29 17:50), 2.11.0 (2020-01-12 15:50), 2.11.1 (2020-01-19 21:00), 2.12.0 (2020-02-23 18:30), 2.13.0 (2020-05-27 07:30), 2.13.3 (2020-07-13 15:10), 2.13.5 (2020-07-31 10:40), 2.14.0 (2020-10-08 16:20), 2.14.4 (2020-11-03 07:40), 2.15.0 (2021-03-14 16:50), 2.16.0 (2021-08-19 00:00), 2.16.1 (2021-08-23 16:00), 2.16.3 (2021-11-22 20:50), 2.17.0 (2022-04-13 16:22), 2.18.0 (2022-09-19 15:56), 2.19.0 (2023-03-14 16:40), 2.20.1 (2023-08-14 09:10), 2.20.3 (2023-09-15 19:12), 2.20.4 (2023-09-25 21:00), 2.21.0 (2024-03-20 13:30)
Other packages that cited brms R package
View brms citation profile
Other R packages that brms depends, imports, suggests or enhances
Complete documentation for brms
Functions, R codes and Examples using the brms R package
Some associated functions: AsymLaplace . BetaBinomial . Dirichlet . ExGaussian . Frechet . GenExtremeValue . Hurdle . InvGaussian . LogisticNormal . MultiNormal . MultiStudentT . R2D2 . Shifted_Lognormal . SkewNormal . StudentT . VarCorr.brmsfit . VonMises . Wiener . ZeroInflated . add_criterion . add_ic . add_rstan_model . addition-terms . ar . arma . as.brmsprior . as.data.frame.brmsfit . as.mcmc.brmsfit . autocor-terms . autocor.brmsfit . bayes_R2.brmsfit . bayes_factor.brmsfit . bridge_sampler.brmsfit . brm . brm_multiple . brms-package . brmsfamily . brmsfit-class . brmsfit_needs_refit . brmsformula-helpers . brmsformula . brmshypothesis . brmsterms . car . coef.brmsfit . combine_models . compare_ic . conditional_effects.brmsfit . conditional_smooths.brmsfit . control_params . cor_ar . cor_arma . cor_arr . cor_brms . cor_bsts . cor_car . cor_cosy . cor_fixed . cor_ma . cor_sar . cosy . cs . custom_family . data_predictor . data_response . density_ratio . diagnostic-quantities . do_call . draws-brms . draws-index-brms . emmeans-brms-helpers . epilepsy . expose_functions.brmsfit . expp1 . family.brmsfit . fcor . fitted.brmsfit . fixef.brmsfit . get_dpar . get_prior . get_refmodel.brmsfit . get_y . gp . gr . horseshoe . hypothesis.brmsfit . inhaler . inv_logit_scaled . is.brmsfit . is.brmsfit_multiple . is.brmsformula . is.brmsprior . is.brmsterms . is.cor_brms . is.mvbrmsformula . is.mvbrmsterms . kfold.brmsfit . kfold_predict . kidney . lasso . launch_shinystan.brmsfit . log_lik.brmsfit . logit_scaled . logm1 . loo.brmsfit . loo_R2.brmsfit . loo_compare.brmsfit . loo_model_weights.brmsfit . loo_moment_match.brmsfit . loo_predict.brmsfit . loo_subsample.brmsfit . loss . ma . make_conditions . make_stancode . make_standata . mcmc_plot.brmsfit . me . mi . mixture . mm . mmc . mo . model_weights.brmsfit . mvbind . mvbrmsformula . ngrps.brmsfit . nsamples.brmsfit . opencl . pairs.brmsfit . parnames . plot.brmsfit . post_prob.brmsfit . posterior_average.brmsfit . posterior_epred.brmsfit . posterior_interval.brmsfit . posterior_linpred.brmsfit . posterior_predict.brmsfit . posterior_samples.brmsfit . posterior_smooths.brmsfit . posterior_summary . posterior_table . pp_average.brmsfit . pp_check.brmsfit . pp_mixture.brmsfit . predict.brmsfit . predictive_error.brmsfit . predictive_interval.brmsfit . prepare_predictions . print.brmsfit . print.brmsprior . prior_draws.brmsfit . prior_summary.brmsfit . ranef.brmsfit . recompile_model . reloo.brmsfit . rename_pars . residuals.brmsfit . restructure . rows2labels . s . sar . save_pars . set_prior . stancode.brmsfit . standata.brmsfit . stanvar . summary.brmsfit . theme_black . theme_default . threading . unstr . update.brmsfit . update.brmsfit_multiple . update_adterms . validate_newdata . validate_prior . vcov.brmsfit . waic.brmsfit . 
Some associated R codes: autocor.R . backends.R . bayes_R2.R . bridgesampling.R . brm.R . brm_multiple.R . brms-package.R . brmsfit-class.R . brmsfit-helpers.R . brmsfit-methods.R . brmsformula.R . brmsterms.R . conditional_effects.R . conditional_smooths.R . data-helpers.R . data-predictor.R . data-response.R . datasets.R . diagnostics.R . distributions.R . emmeans.R . exclude_pars.R . exclude_terms.R . families.R . family-lists.R . formula-ac.R . formula-ad.R . formula-cs.R . formula-gp.R . formula-re.R . formula-sm.R . formula-sp.R . ggplot-themes.R . hypothesis.R . kfold.R . launch_shinystan.R . log_lik.R . loo.R . loo_moment_match.R . loo_predict.R . loo_subsample.R . lsp.R . make_stancode.R . make_standata.R . misc.R . model_weights.R . numeric-helpers.R . plot.R . posterior.R . posterior_epred.R . posterior_predict.R . posterior_samples.R . posterior_smooths.R . pp_check.R . pp_mixture.R . predictive_error.R . predictor.R . prepare_predictions.R . prior_draws.R . priors.R . projpred.R . reloo.R . rename_pars.R . restructure.R . stan-helpers.R . stan-likelihood.R . stan-predictor.R . stan-prior.R . stan-response.R . stanvars.R . summary.R . update.R . zzz.R .  Full brms package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

nlpred  
Estimators of Non-Linear Cross-Validated Risks Optimized for Small Samples
Methods for obtaining improved estimates of non-linear cross-validated risks are obtained using targ ...
Download / Learn more Package Citations See dependency  
pim  
Fit Probabilistic Index Models
Fit a probabilistic index model as described in Thas et al, 2012: ...
Download / Learn more Package Citations See dependency  
GEEmediate  
Mediation Analysis for Generalized Linear Models Using the Difference Method
Causal mediation analysis for a single exposure/treatment and a single mediator, both allowed to be ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  

23,580

R Packages

204,057

Dependencies

63,980

Author Associations

23,581

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA