Other packages > Find by keyword >

brms  

First Published: 2015-05-08
Latest Update: 2023-09-25
Description:
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: B
How to cite:
Paul-Christian Bürkner (2015). brms: Bayesian Regression Models using 'Stan'. R package version 2.22.0, https://cran.r-project.org/web/packages/brms. Accessed 02 Apr. 2025.
Previous versions and publish date:
0.1.0 (2015-05-08 11:47), 0.2.0 (2015-05-27 01:35), 0.3.0 (2015-06-29 16:41), 0.4.0 (2015-07-23 15:24), 0.4.1 (2015-08-03 00:20), 0.5.0 (2015-09-13 09:22), 0.6.0 (2015-11-14 00:06), 0.7.0 (2016-01-18 13:17), 0.8.0 (2016-02-15 23:59), 0.9.0 (2016-04-19 13:50), 0.9.1 (2016-05-17 21:13), 0.10.0 (2016-06-29 17:03), 1.0.0 (2016-09-15 03:00), 1.0.1 (2016-09-16 12:50), 1.1.0 (2016-10-11 23:53), 1.2.0 (2016-12-06 11:28), 1.3.0 (2016-12-20 00:55), 1.3.1 (2016-12-22 00:38), 1.4.0 (2017-01-27 18:47), 1.5.0 (2017-02-17 19:02), 1.5.1 (2017-02-26 19:56), 1.6.0 (2017-04-06 23:05), 1.6.1 (2017-04-17 15:54), 1.7.0 (2017-05-23 19:29), 1.8.0 (2017-07-20 21:53), 1.9.0 (2017-08-15 14:18), 1.10.0 (2017-09-09 23:51), 1.10.2 (2017-10-20 22:52), 2.0.0 (2017-12-15 13:58), 2.0.1 (2017-12-21 22:24), 2.1.0 (2018-01-23 22:48), 2.2.0 (2018-04-13 10:43), 2.3.0 (2018-05-14 17:47), 2.3.1 (2018-06-05 19:43), 2.4.0 (2018-07-20 23:50), 2.5.0 (2018-09-16 18:40), 2.6.0 (2018-10-23 12:40), 2.7.0 (2018-12-17 17:00), 2.8.0 (2019-03-15 10:13), 2.9.0 (2019-05-23 07:00), 2.10.0 (2019-08-29 17:50), 2.11.0 (2020-01-12 15:50), 2.11.1 (2020-01-19 21:00), 2.12.0 (2020-02-23 18:30), 2.13.0 (2020-05-27 07:30), 2.13.3 (2020-07-13 15:10), 2.13.5 (2020-07-31 10:40), 2.14.0 (2020-10-08 16:20), 2.14.4 (2020-11-03 07:40), 2.15.0 (2021-03-14 16:50), 2.16.0 (2021-08-19 00:00), 2.16.1 (2021-08-23 16:00), 2.16.3 (2021-11-22 20:50), 2.17.0 (2022-04-13 16:22), 2.18.0 (2022-09-19 15:56), 2.19.0 (2023-03-14 16:40), 2.20.1 (2023-08-14 09:10), 2.20.3 (2023-09-15 19:12), 2.20.4 (2023-09-25 21:00), 2.21.0 (2024-03-20 13:30)
Other packages that cited brms R package
View brms citation profile
Other R packages that brms depends, imports, suggests or enhances
Complete documentation for brms
Functions, R codes and Examples using the brms R package
Some associated functions: AsymLaplace . BetaBinomial . Dirichlet . ExGaussian . Frechet . GenExtremeValue . Hurdle . InvGaussian . LogisticNormal . MultiNormal . MultiStudentT . R2D2 . Shifted_Lognormal . SkewNormal . StudentT . VarCorr.brmsfit . VonMises . Wiener . ZeroInflated . add_criterion . add_ic . add_rstan_model . addition-terms . ar . arma . as.brmsprior . as.data.frame.brmsfit . as.mcmc.brmsfit . autocor-terms . autocor.brmsfit . bayes_R2.brmsfit . bayes_factor.brmsfit . bridge_sampler.brmsfit . brm . brm_multiple . brms-package . brmsfamily . brmsfit-class . brmsfit_needs_refit . brmsformula-helpers . brmsformula . brmshypothesis . brmsterms . car . coef.brmsfit . combine_models . compare_ic . conditional_effects.brmsfit . conditional_smooths.brmsfit . control_params . cor_ar . cor_arma . cor_arr . cor_brms . cor_bsts . cor_car . cor_cosy . cor_fixed . cor_ma . cor_sar . cosy . cs . custom_family . data_predictor . data_response . density_ratio . diagnostic-quantities . do_call . draws-brms . draws-index-brms . emmeans-brms-helpers . epilepsy . expose_functions.brmsfit . expp1 . family.brmsfit . fcor . fitted.brmsfit . fixef.brmsfit . get_dpar . get_prior . get_refmodel.brmsfit . get_y . gp . gr . horseshoe . hypothesis.brmsfit . inhaler . inv_logit_scaled . is.brmsfit . is.brmsfit_multiple . is.brmsformula . is.brmsprior . is.brmsterms . is.cor_brms . is.mvbrmsformula . is.mvbrmsterms . kfold.brmsfit . kfold_predict . kidney . lasso . launch_shinystan.brmsfit . log_lik.brmsfit . logit_scaled . logm1 . loo.brmsfit . loo_R2.brmsfit . loo_compare.brmsfit . loo_model_weights.brmsfit . loo_moment_match.brmsfit . loo_predict.brmsfit . loo_subsample.brmsfit . loss . ma . make_conditions . make_stancode . make_standata . mcmc_plot.brmsfit . me . mi . mixture . mm . mmc . mo . model_weights.brmsfit . mvbind . mvbrmsformula . ngrps.brmsfit . nsamples.brmsfit . opencl . pairs.brmsfit . parnames . plot.brmsfit . post_prob.brmsfit . posterior_average.brmsfit . posterior_epred.brmsfit . posterior_interval.brmsfit . posterior_linpred.brmsfit . posterior_predict.brmsfit . posterior_samples.brmsfit . posterior_smooths.brmsfit . posterior_summary . posterior_table . pp_average.brmsfit . pp_check.brmsfit . pp_mixture.brmsfit . predict.brmsfit . predictive_error.brmsfit . predictive_interval.brmsfit . prepare_predictions . print.brmsfit . print.brmsprior . prior_draws.brmsfit . prior_summary.brmsfit . ranef.brmsfit . recompile_model . reloo.brmsfit . rename_pars . residuals.brmsfit . restructure . rows2labels . s . sar . save_pars . set_prior . stancode.brmsfit . standata.brmsfit . stanvar . summary.brmsfit . theme_black . theme_default . threading . unstr . update.brmsfit . update.brmsfit_multiple . update_adterms . validate_newdata . validate_prior . vcov.brmsfit . waic.brmsfit . 
Some associated R codes: autocor.R . backends.R . bayes_R2.R . bridgesampling.R . brm.R . brm_multiple.R . brms-package.R . brmsfit-class.R . brmsfit-helpers.R . brmsfit-methods.R . brmsformula.R . brmsterms.R . conditional_effects.R . conditional_smooths.R . data-helpers.R . data-predictor.R . data-response.R . datasets.R . diagnostics.R . distributions.R . emmeans.R . exclude_pars.R . exclude_terms.R . families.R . family-lists.R . formula-ac.R . formula-ad.R . formula-cs.R . formula-gp.R . formula-re.R . formula-sm.R . formula-sp.R . ggplot-themes.R . hypothesis.R . kfold.R . launch_shinystan.R . log_lik.R . loo.R . loo_moment_match.R . loo_predict.R . loo_subsample.R . lsp.R . make_stancode.R . make_standata.R . misc.R . model_weights.R . numeric-helpers.R . plot.R . posterior.R . posterior_epred.R . posterior_predict.R . posterior_samples.R . posterior_smooths.R . pp_check.R . pp_mixture.R . predictive_error.R . predictor.R . prepare_predictions.R . prior_draws.R . priors.R . projpred.R . reloo.R . rename_pars.R . restructure.R . stan-helpers.R . stan-likelihood.R . stan-predictor.R . stan-prior.R . stan-response.R . stanvars.R . summary.R . update.R . zzz.R .  Full brms package functions and examples
Downloads during the last 30 days
03/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/01Downloads for brms4005006007008009001000110012001300TrendBars

Today's Hot Picks in Authors and Packages

pirate  
Generated Effect Modifier
An implementation of the generated effect modifier (GEM) method. This method constructs composite va ...
Download / Learn more Package Citations See dependency  
Maintainer: Zhe Su (view profile)
munfold  
Metric Unfolding
Multidimensional unfolding using Schoenemann's algorithm for metric and Procrustes rotation of unfo ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
CTShiny  
Interactive Document for Working with Classification Tree Analysis
An interactive document on the topic of classification tree analysis using 'rmarkdown' and 'shiny' ...
Download / Learn more Package Citations See dependency  
geonapi  
'GeoNetwork' API R Interface
Provides an R interface to the 'GeoNetwork' API () allowing ...
Download / Learn more Package Citations See dependency  
binom  
Binomial Confidence Intervals for Several Parameterizations
Constructs confidence intervals on the probability of success in a binomial experiment via several ...
Download / Learn more Package Citations See dependency  

23,990

R Packages

207,311

Dependencies

64,809

Author Associations

23,991

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA