Other packages > Find by keyword >

brms  

Bayesian Regression Models using 'Stan'
View on CRAN: Click here


Download and install brms package within the R console
Install from CRAN:
install.packages("brms")

Install from Github:
library("remotes")
install_github("cran/brms")

Install by package version:
library("remotes")
install_version("brms", "2.22.0")



Attach the package and use:
library("brms")
Maintained by
Paul-Christian Bürkner
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-05-08
Latest Update: 2023-09-25
Description:
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: B
How to cite:
Paul-Christian Bürkner (2015). brms: Bayesian Regression Models using 'Stan'. R package version 2.22.0, https://cran.r-project.org/web/packages/brms. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1.0 (2015-05-08 11:47), 0.2.0 (2015-05-27 01:35), 0.3.0 (2015-06-29 16:41), 0.4.0 (2015-07-23 15:24), 0.4.1 (2015-08-03 00:20), 0.5.0 (2015-09-13 09:22), 0.6.0 (2015-11-14 00:06), 0.7.0 (2016-01-18 13:17), 0.8.0 (2016-02-15 23:59), 0.9.0 (2016-04-19 13:50), 0.9.1 (2016-05-17 21:13), 0.10.0 (2016-06-29 17:03), 1.0.0 (2016-09-15 03:00), 1.0.1 (2016-09-16 12:50), 1.1.0 (2016-10-11 23:53), 1.2.0 (2016-12-06 11:28), 1.3.0 (2016-12-20 00:55), 1.3.1 (2016-12-22 00:38), 1.4.0 (2017-01-27 18:47), 1.5.0 (2017-02-17 19:02), 1.5.1 (2017-02-26 19:56), 1.6.0 (2017-04-06 23:05), 1.6.1 (2017-04-17 15:54), 1.7.0 (2017-05-23 19:29), 1.8.0 (2017-07-20 21:53), 1.9.0 (2017-08-15 14:18), 1.10.0 (2017-09-09 23:51), 1.10.2 (2017-10-20 22:52), 2.0.0 (2017-12-15 13:58), 2.0.1 (2017-12-21 22:24), 2.1.0 (2018-01-23 22:48), 2.2.0 (2018-04-13 10:43), 2.3.0 (2018-05-14 17:47), 2.3.1 (2018-06-05 19:43), 2.4.0 (2018-07-20 23:50), 2.5.0 (2018-09-16 18:40), 2.6.0 (2018-10-23 12:40), 2.7.0 (2018-12-17 17:00), 2.8.0 (2019-03-15 10:13), 2.9.0 (2019-05-23 07:00), 2.10.0 (2019-08-29 17:50), 2.11.0 (2020-01-12 15:50), 2.11.1 (2020-01-19 21:00), 2.12.0 (2020-02-23 18:30), 2.13.0 (2020-05-27 07:30), 2.13.3 (2020-07-13 15:10), 2.13.5 (2020-07-31 10:40), 2.14.0 (2020-10-08 16:20), 2.14.4 (2020-11-03 07:40), 2.15.0 (2021-03-14 16:50), 2.16.0 (2021-08-19 00:00), 2.16.1 (2021-08-23 16:00), 2.16.3 (2021-11-22 20:50), 2.17.0 (2022-04-13 16:22), 2.18.0 (2022-09-19 15:56), 2.19.0 (2023-03-14 16:40), 2.20.1 (2023-08-14 09:10), 2.20.3 (2023-09-15 19:12), 2.20.4 (2023-09-25 21:00), 2.21.0 (2024-03-20 13:30)
Other packages that cited brms R package
View brms citation profile
Other R packages that brms depends, imports, suggests or enhances
Complete documentation for brms
Functions, R codes and Examples using the brms R package
Some associated functions: AsymLaplace . BetaBinomial . Dirichlet . ExGaussian . Frechet . GenExtremeValue . Hurdle . InvGaussian . LogisticNormal . MultiNormal . MultiStudentT . R2D2 . Shifted_Lognormal . SkewNormal . StudentT . VarCorr.brmsfit . VonMises . Wiener . ZeroInflated . add_criterion . add_ic . add_rstan_model . addition-terms . ar . arma . as.brmsprior . as.data.frame.brmsfit . as.mcmc.brmsfit . autocor-terms . autocor.brmsfit . bayes_R2.brmsfit . bayes_factor.brmsfit . bridge_sampler.brmsfit . brm . brm_multiple . brms-package . brmsfamily . brmsfit-class . brmsfit_needs_refit . brmsformula-helpers . brmsformula . brmshypothesis . brmsterms . car . coef.brmsfit . combine_models . compare_ic . conditional_effects.brmsfit . conditional_smooths.brmsfit . control_params . cor_ar . cor_arma . cor_arr . cor_brms . cor_bsts . cor_car . cor_cosy . cor_fixed . cor_ma . cor_sar . cosy . cs . custom_family . data_predictor . data_response . density_ratio . diagnostic-quantities . do_call . draws-brms . draws-index-brms . emmeans-brms-helpers . epilepsy . expose_functions.brmsfit . expp1 . family.brmsfit . fcor . fitted.brmsfit . fixef.brmsfit . get_dpar . get_prior . get_refmodel.brmsfit . get_y . gp . gr . horseshoe . hypothesis.brmsfit . inhaler . inv_logit_scaled . is.brmsfit . is.brmsfit_multiple . is.brmsformula . is.brmsprior . is.brmsterms . is.cor_brms . is.mvbrmsformula . is.mvbrmsterms . kfold.brmsfit . kfold_predict . kidney . lasso . launch_shinystan.brmsfit . log_lik.brmsfit . logit_scaled . logm1 . loo.brmsfit . loo_R2.brmsfit . loo_compare.brmsfit . loo_model_weights.brmsfit . loo_moment_match.brmsfit . loo_predict.brmsfit . loo_subsample.brmsfit . loss . ma . make_conditions . make_stancode . make_standata . mcmc_plot.brmsfit . me . mi . mixture . mm . mmc . mo . model_weights.brmsfit . mvbind . mvbrmsformula . ngrps.brmsfit . nsamples.brmsfit . opencl . pairs.brmsfit . parnames . plot.brmsfit . post_prob.brmsfit . posterior_average.brmsfit . posterior_epred.brmsfit . posterior_interval.brmsfit . posterior_linpred.brmsfit . posterior_predict.brmsfit . posterior_samples.brmsfit . posterior_smooths.brmsfit . posterior_summary . posterior_table . pp_average.brmsfit . pp_check.brmsfit . pp_mixture.brmsfit . predict.brmsfit . predictive_error.brmsfit . predictive_interval.brmsfit . prepare_predictions . print.brmsfit . print.brmsprior . prior_draws.brmsfit . prior_summary.brmsfit . ranef.brmsfit . recompile_model . reloo.brmsfit . rename_pars . residuals.brmsfit . restructure . rows2labels . s . sar . save_pars . set_prior . stancode.brmsfit . standata.brmsfit . stanvar . summary.brmsfit . theme_black . theme_default . threading . unstr . update.brmsfit . update.brmsfit_multiple . update_adterms . validate_newdata . validate_prior . vcov.brmsfit . waic.brmsfit . 
Some associated R codes: autocor.R . backends.R . bayes_R2.R . bridgesampling.R . brm.R . brm_multiple.R . brms-package.R . brmsfit-class.R . brmsfit-helpers.R . brmsfit-methods.R . brmsformula.R . brmsterms.R . conditional_effects.R . conditional_smooths.R . data-helpers.R . data-predictor.R . data-response.R . datasets.R . diagnostics.R . distributions.R . emmeans.R . exclude_pars.R . exclude_terms.R . families.R . family-lists.R . formula-ac.R . formula-ad.R . formula-cs.R . formula-gp.R . formula-re.R . formula-sm.R . formula-sp.R . ggplot-themes.R . hypothesis.R . kfold.R . launch_shinystan.R . log_lik.R . loo.R . loo_moment_match.R . loo_predict.R . loo_subsample.R . lsp.R . make_stancode.R . make_standata.R . misc.R . model_weights.R . numeric-helpers.R . plot.R . posterior.R . posterior_epred.R . posterior_predict.R . posterior_samples.R . posterior_smooths.R . pp_check.R . pp_mixture.R . predictive_error.R . predictor.R . prepare_predictions.R . prior_draws.R . priors.R . projpred.R . reloo.R . rename_pars.R . restructure.R . stan-helpers.R . stan-likelihood.R . stan-predictor.R . stan-prior.R . stan-response.R . stanvars.R . summary.R . update.R . zzz.R .  Full brms package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA