Other packages > Find by keyword >

brms  

Bayesian Regression Models using 'Stan'
View on CRAN: Click here


Download and install brms package within the R console
Install from CRAN:
install.packages("brms")

Install from Github:
library("remotes")
install_github("cran/brms")

Install by package version:
library("remotes")
install_version("brms", "2.22.0")



Attach the package and use:
library("brms")
Maintained by
Paul-Christian Bürkner
[Scholar Profile | Author Map]
First Published: 2015-05-08
Latest Update: 2023-09-25
Description:
Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: B
How to cite:
Paul-Christian Bürkner (2015). brms: Bayesian Regression Models using 'Stan'. R package version 2.22.0, https://cran.r-project.org/web/packages/brms. Accessed 03 May. 2025.
Previous versions and publish date:
0.1.0 (2015-05-08 11:47), 0.2.0 (2015-05-27 01:35), 0.3.0 (2015-06-29 16:41), 0.4.0 (2015-07-23 15:24), 0.4.1 (2015-08-03 00:20), 0.5.0 (2015-09-13 09:22), 0.6.0 (2015-11-14 00:06), 0.7.0 (2016-01-18 13:17), 0.8.0 (2016-02-15 23:59), 0.9.0 (2016-04-19 13:50), 0.9.1 (2016-05-17 21:13), 0.10.0 (2016-06-29 17:03), 1.0.0 (2016-09-15 03:00), 1.0.1 (2016-09-16 12:50), 1.1.0 (2016-10-11 23:53), 1.2.0 (2016-12-06 11:28), 1.3.0 (2016-12-20 00:55), 1.3.1 (2016-12-22 00:38), 1.4.0 (2017-01-27 18:47), 1.5.0 (2017-02-17 19:02), 1.5.1 (2017-02-26 19:56), 1.6.0 (2017-04-06 23:05), 1.6.1 (2017-04-17 15:54), 1.7.0 (2017-05-23 19:29), 1.8.0 (2017-07-20 21:53), 1.9.0 (2017-08-15 14:18), 1.10.0 (2017-09-09 23:51), 1.10.2 (2017-10-20 22:52), 2.0.0 (2017-12-15 13:58), 2.0.1 (2017-12-21 22:24), 2.1.0 (2018-01-23 22:48), 2.2.0 (2018-04-13 10:43), 2.3.0 (2018-05-14 17:47), 2.3.1 (2018-06-05 19:43), 2.4.0 (2018-07-20 23:50), 2.5.0 (2018-09-16 18:40), 2.6.0 (2018-10-23 12:40), 2.7.0 (2018-12-17 17:00), 2.8.0 (2019-03-15 10:13), 2.9.0 (2019-05-23 07:00), 2.10.0 (2019-08-29 17:50), 2.11.0 (2020-01-12 15:50), 2.11.1 (2020-01-19 21:00), 2.12.0 (2020-02-23 18:30), 2.13.0 (2020-05-27 07:30), 2.13.3 (2020-07-13 15:10), 2.13.5 (2020-07-31 10:40), 2.14.0 (2020-10-08 16:20), 2.14.4 (2020-11-03 07:40), 2.15.0 (2021-03-14 16:50), 2.16.0 (2021-08-19 00:00), 2.16.1 (2021-08-23 16:00), 2.16.3 (2021-11-22 20:50), 2.17.0 (2022-04-13 16:22), 2.18.0 (2022-09-19 15:56), 2.19.0 (2023-03-14 16:40), 2.20.1 (2023-08-14 09:10), 2.20.3 (2023-09-15 19:12), 2.20.4 (2023-09-25 21:00), 2.21.0 (2024-03-20 13:30)
Other packages that cited brms R package
View brms citation profile
Other R packages that brms depends, imports, suggests or enhances
Complete documentation for brms
Functions, R codes and Examples using the brms R package
Some associated functions: AsymLaplace . BetaBinomial . Dirichlet . ExGaussian . Frechet . GenExtremeValue . Hurdle . InvGaussian . LogisticNormal . MultiNormal . MultiStudentT . R2D2 . Shifted_Lognormal . SkewNormal . StudentT . VarCorr.brmsfit . VonMises . Wiener . ZeroInflated . add_criterion . add_ic . add_rstan_model . addition-terms . ar . arma . as.brmsprior . as.data.frame.brmsfit . as.mcmc.brmsfit . autocor-terms . autocor.brmsfit . bayes_R2.brmsfit . bayes_factor.brmsfit . bridge_sampler.brmsfit . brm . brm_multiple . brms-package . brmsfamily . brmsfit-class . brmsfit_needs_refit . brmsformula-helpers . brmsformula . brmshypothesis . brmsterms . car . coef.brmsfit . combine_models . compare_ic . conditional_effects.brmsfit . conditional_smooths.brmsfit . control_params . cor_ar . cor_arma . cor_arr . cor_brms . cor_bsts . cor_car . cor_cosy . cor_fixed . cor_ma . cor_sar . cosy . cs . custom_family . data_predictor . data_response . density_ratio . diagnostic-quantities . do_call . draws-brms . draws-index-brms . emmeans-brms-helpers . epilepsy . expose_functions.brmsfit . expp1 . family.brmsfit . fcor . fitted.brmsfit . fixef.brmsfit . get_dpar . get_prior . get_refmodel.brmsfit . get_y . gp . gr . horseshoe . hypothesis.brmsfit . inhaler . inv_logit_scaled . is.brmsfit . is.brmsfit_multiple . is.brmsformula . is.brmsprior . is.brmsterms . is.cor_brms . is.mvbrmsformula . is.mvbrmsterms . kfold.brmsfit . kfold_predict . kidney . lasso . launch_shinystan.brmsfit . log_lik.brmsfit . logit_scaled . logm1 . loo.brmsfit . loo_R2.brmsfit . loo_compare.brmsfit . loo_model_weights.brmsfit . loo_moment_match.brmsfit . loo_predict.brmsfit . loo_subsample.brmsfit . loss . ma . make_conditions . make_stancode . make_standata . mcmc_plot.brmsfit . me . mi . mixture . mm . mmc . mo . model_weights.brmsfit . mvbind . mvbrmsformula . ngrps.brmsfit . nsamples.brmsfit . opencl . pairs.brmsfit . parnames . plot.brmsfit . post_prob.brmsfit . posterior_average.brmsfit . posterior_epred.brmsfit . posterior_interval.brmsfit . posterior_linpred.brmsfit . posterior_predict.brmsfit . posterior_samples.brmsfit . posterior_smooths.brmsfit . posterior_summary . posterior_table . pp_average.brmsfit . pp_check.brmsfit . pp_mixture.brmsfit . predict.brmsfit . predictive_error.brmsfit . predictive_interval.brmsfit . prepare_predictions . print.brmsfit . print.brmsprior . prior_draws.brmsfit . prior_summary.brmsfit . ranef.brmsfit . recompile_model . reloo.brmsfit . rename_pars . residuals.brmsfit . restructure . rows2labels . s . sar . save_pars . set_prior . stancode.brmsfit . standata.brmsfit . stanvar . summary.brmsfit . theme_black . theme_default . threading . unstr . update.brmsfit . update.brmsfit_multiple . update_adterms . validate_newdata . validate_prior . vcov.brmsfit . waic.brmsfit . 
Some associated R codes: autocor.R . backends.R . bayes_R2.R . bridgesampling.R . brm.R . brm_multiple.R . brms-package.R . brmsfit-class.R . brmsfit-helpers.R . brmsfit-methods.R . brmsformula.R . brmsterms.R . conditional_effects.R . conditional_smooths.R . data-helpers.R . data-predictor.R . data-response.R . datasets.R . diagnostics.R . distributions.R . emmeans.R . exclude_pars.R . exclude_terms.R . families.R . family-lists.R . formula-ac.R . formula-ad.R . formula-cs.R . formula-gp.R . formula-re.R . formula-sm.R . formula-sp.R . ggplot-themes.R . hypothesis.R . kfold.R . launch_shinystan.R . log_lik.R . loo.R . loo_moment_match.R . loo_predict.R . loo_subsample.R . lsp.R . make_stancode.R . make_standata.R . misc.R . model_weights.R . numeric-helpers.R . plot.R . posterior.R . posterior_epred.R . posterior_predict.R . posterior_samples.R . posterior_smooths.R . pp_check.R . pp_mixture.R . predictive_error.R . predictor.R . prepare_predictions.R . prior_draws.R . priors.R . projpred.R . reloo.R . rename_pars.R . restructure.R . stan-helpers.R . stan-likelihood.R . stan-predictor.R . stan-prior.R . stan-response.R . stanvars.R . summary.R . update.R . zzz.R .  Full brms package functions and examples
Downloads during the last 30 days
04/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/2804/2904/3005/01Downloads for brms40060080010001200140016001800TrendBars

Today's Hot Picks in Authors and Packages

mlr3fselect  
Feature Selection for 'mlr3'
Feature selection package of the 'mlr3' ecosystem. It selects the optimal feature set for any 'mlr3 ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
nlsem  
Fitting Structural Equation Mixture Models
Estimation of structural equation models with nonlinear effects and underlying nonnormal distributi ...
Download / Learn more Package Citations See dependency  
TestDesign  
Optimal Test Design Approach to Fixed and Adaptive Test Construction
Uses the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (201 ...
Download / Learn more Package Citations See dependency  
farrell  
Interactive Interface to Data Envelopment Analysis Modeling
Allows the user to execute interactively radial data envelopment analysis models. The user has the a ...
Download / Learn more Package Citations See dependency  
grabsampling  
Probability of Detection for Grab Sample Selection
Functions for obtaining the probability of detection, for grab samples selection by using two differ ...
Download / Learn more Package Citations See dependency  

24,142

R Packages

207,311

Dependencies

65,312

Author Associations

24,143

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA