Other packages > Find by keyword >

blorr  

Tools for Developing Binary Logistic Regression Models
View on CRAN: Click here


Download and install blorr package within the R console
Install from CRAN:
install.packages("blorr")

Install from Github:
library("remotes")
install_github("cran/blorr")

Install by package version:
library("remotes")
install_version("blorr", "0.3.1")



Attach the package and use:
library("blorr")
Maintained by
Aravind Hebbali
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2018-05-11
Latest Update: 2020-05-28
Description:
Tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a 'shiny' app for interactive model building.
How to cite:
Aravind Hebbali (2018). blorr: Tools for Developing Binary Logistic Regression Models. R package version 0.3.1, https://cran.r-project.org/web/packages/blorr. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1.0 (2018-05-11 11:56), 0.2.0 (2018-12-14 13:10), 0.2.1 (2019-03-12 16:36), 0.2.2 (2020-02-03 12:40), 0.3.0 (2020-05-28 14:20)
Other packages that cited blorr R package
View blorr citation profile
Other R packages that blorr depends, imports, suggests or enhances
Complete documentation for blorr
Functions, R codes and Examples using the blorr R package
Some associated functions: bank_marketing . blorr . blr_bivariate_analysis . blr_coll_diag . blr_confusion_matrix . blr_decile_capture_rate . blr_decile_lift_chart . blr_gains_table . blr_gini_index . blr_ks_chart . blr_launch_app . blr_linktest . blr_lorenz_curve . blr_model_fit_stats . blr_multi_model_fit_stats . blr_pairs . blr_plot_c_fitted . blr_plot_c_leverage . blr_plot_deviance_fitted . blr_plot_deviance_residual . blr_plot_dfbetas_panel . blr_plot_diag_c . blr_plot_diag_cbar . blr_plot_diag_difchisq . blr_plot_diag_difdev . blr_plot_diag_fit . blr_plot_diag_influence . blr_plot_diag_leverage . blr_plot_difchisq_fitted . blr_plot_difchisq_leverage . blr_plot_difdev_fitted . blr_plot_difdev_leverage . blr_plot_fitted_leverage . blr_plot_leverage . blr_plot_leverage_fitted . blr_plot_pearson_residual . blr_plot_residual_fitted . blr_prep_dcrate_data . blr_prep_kschart_data . blr_prep_lchart_gmean . blr_prep_lorenz_data . blr_prep_roc_data . blr_regress . blr_residual_diagnostics . blr_roc_curve . blr_rsq_adj_count . blr_rsq_count . blr_rsq_cox_snell . blr_rsq_effron . blr_rsq_mcfadden . blr_rsq_mcfadden_adj . blr_rsq_mckelvey_zavoina . blr_rsq_nagelkerke . blr_segment . blr_segment_dist . blr_segment_twoway . blr_step_aic_backward . blr_step_aic_both . blr_step_aic_forward . blr_step_p_backward . blr_step_p_both . blr_step_p_forward . blr_test_hosmer_lemeshow . blr_test_lr . blr_woe_iv . blr_woe_iv_stats . hsb2 . stepwise . 
Some associated R codes: RcppExports.R . blr-backward-elimination.R . blr-bivariate-analysis.R . blr-blorr.R . blr-collinearity-diagnostics.R . blr-data-bank-marketing.R . blr-data-hsb.R . blr-data-stepwise.R . blr-error-messages.R . blr-forward-selection.R . blr-gains-table.R . blr-hosmer-lemeshow-test.R . blr-launch-app.R . blr-linktest.R . blr-lorenz-curve.R . blr-lrtest.R . blr-model-fit-stats.R . blr-model-validation.R . blr-multi-model-fit-stats.R . blr-output.R . blr-pairs.R . blr-plots-data.R . blr-plots.R . blr-regress-compute.R . blr-regress.R . blr-residual-diagnostics.R . blr-roc-curve.R . blr-stepwise-backward-regression.R . blr-stepwise-forward-regression.R . blr-stepwise-regression.R . blr-stepwise-selection.R . blr-utils.R . blr-woe-iv.R . zzz.R .  Full blorr package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA