Other packages > Find by keyword >

TFRE  

A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression
View on CRAN: Click here


Download and install TFRE package within the R console
Install from CRAN:
install.packages("TFRE")

Install from Github:
library("remotes")
install_github("cran/TFRE")

Install by package version:
library("remotes")
install_version("TFRE", "0.1.0")



Attach the package and use:
library("TFRE")
Maintained by
Yunan Wu
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2024-01-31
Latest Update: 2024-01-31
Description:
Provide functions to estimate the coefficients in high-dimensional linear regressions via a tuning-free and robust approach. The method was published in Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), "A Tuning-free Robust and Efficient Approach to High-dimensional Regression", Journal of the American Statistical Association, 115:532, 1700-1714(JASA’s discussion paper), <doi:10.1080/01621459.2020.1840989>. See also Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), "Rejoinder to “A tuning-free robust and efficient approach to high-dimensional regression". Journal of the American Statistical Association, 115, 1726-1729, <doi:10.1080/01621459.2020.1843865>; Peng, B. and Wang, L. (2015), "An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression", Journal of Computational and Graphical Statistics, 24:3, 676-694, <doi:10.1080/10618600.2014.913516>; Clémençon, S., Colin, I., and Bellet, A. (2016), "Scaling-up empirical risk minimization: optimization of incomplete u-statistics", The Journal of Machine Learning Research, 17(1):2682–2717; Fan, J. and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties", Journal of the American Statistical Association, 96:456, 1348-1360, <doi:10.1198/016214501753382273>.
How to cite:
Yunan Wu (2024). TFRE: A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression. R package version 0.1.0, https://cran.r-project.org/web/packages/TFRE. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited TFRE R package
View TFRE citation profile
Other R packages that TFRE depends, imports, suggests or enhances
Complete documentation for TFRE
Functions, R codes and Examples using the TFRE R package
Full TFRE package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA