Other packages > Find by keyword >

Surrogate  

Evaluation of Surrogate Endpoints in Clinical Trials
View on CRAN: Click here


Download and install Surrogate package within the R console
Install from CRAN:
install.packages("Surrogate")

Install from Github:
library("remotes")
install_github("cran/Surrogate")

Install by package version:
library("remotes")
install_version("Surrogate", "3.3.0")



Attach the package and use:
library("Surrogate")
Maintained by
Wim Van Der Elst
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-03-19
Latest Update: 2023-09-01
Description:
In a clinical trial, it frequently occurs that the most credible outcome to evaluate the effectiveness of a new therapy (the true endpoint) is difficult to measure. In such a situation, it can be an effective strategy to replace the true endpoint by a (bio)marker that is easier to measure and that allows for a prediction of the treatment effect on the true endpoint (a surrogate endpoint). The package 'Surrogate' allows for an evaluation of the appropriateness of a candidate surrogate endpoint based on the meta-analytic, information-theoretic, and causal-inference frameworks. Part of this software has been developed using funding provided from the European Union's Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no 602552), the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3), GlaxoSmithKline Biologicals, Baekeland Mandaat (HBC.2022.0145), and Johnson & Johnson Innovative Medicine.
How to cite:
Wim Van Der Elst (2014). Surrogate: Evaluation of Surrogate Endpoints in Clinical Trials. R package version 3.3.0, https://cran.r-project.org/web/packages/Surrogate. Accessed 07 Nov. 2024.
Previous versions and publish date:
0.1-0 (2014-03-19 12:19), 0.1-1 (2014-05-12 00:56), 0.1-2 (2014-07-30 15:58), 0.1-3 (2014-10-25 01:16), 0.1-4 (2014-12-12 21:30), 0.1-5 (2015-03-26 17:17), 0.1-6 (2015-05-15 00:12), 0.1-61 (2015-06-11 18:31), 0.1-62 (2015-08-25 01:13), 0.1-63 (2015-10-10 01:02), 0.1-64 (2015-11-21 15:56), 0.1-66 (2016-01-23 01:11), 0.1-67 (2016-02-05 19:26), 0.1-68 (2016-02-21 19:51), 0.1-69 (2016-03-18 18:34), 0.1-71 (2016-04-01 16:40), 0.1-72 (2016-04-23 14:41), 0.1-73 (2016-05-16 14:33), 0.1-74 (2016-07-27 11:52), 0.1-75 (2016-09-03 16:39), 0.1-76 (2016-09-24 13:58), 0.1-77 (2016-10-01 15:03), 0.1-79 (2016-10-28 00:05), 0.1-801 (2017-03-05 17:31), 0.2 (2017-06-05 10:38), 0.4 (2017-08-18 18:10), 0.5 (2017-10-08 23:18), 0.6 (2018-01-20 10:27), 0.7 (2018-04-20 22:23), 0.8 (2018-06-02 06:58), 0.9 (2018-06-09 17:46), 1.0 (2018-10-10 12:00), 1.1 (2018-10-18 21:50), 1.2 (2019-02-06 06:43), 1.3 (2019-09-22 15:20), 1.4 (2019-10-26 08:10), 1.5 (2019-12-06 21:50), 1.6 (2020-01-29 16:10), 1.7 (2020-03-23 02:10), 1.8 (2020-12-13 18:00), 1.9 (2021-07-06 18:00), 2.0 (2021-09-28 19:50), 2.1 (2022-06-08 14:50), 2.2 (2022-06-18 10:00), 2.3 (2022-07-08 18:30), 2.4 (2022-08-13 17:20), 2.5 (2022-11-30 10:50), 2.6 (2023-01-22 17:40), 2.7 (2023-02-13 10:20), 2.8 (2023-03-07 10:30), 3.0 (2023-06-22 08:20), 3.1 (2023-09-01 17:20), 3.2.0 (2023-09-06 16:50), 3.2.1 (2023-09-25 11:10), 3.2.2 (2024-02-20 11:10), 3.2.4 (2024-02-29 22:32), 3.2.5 (2024-03-19 15:00), 3.2.6 (2024-05-27 14:30)
Other packages that cited Surrogate R package
View Surrogate citation profile
Other R packages that Surrogate depends, imports, suggests or enhances
Complete documentation for Surrogate
Functions, R codes and Examples using the Surrogate R package
Some associated functions: AA.MultS . ARMD.MultS . ARMD . BifixedContCont . BimixedCbCContCont . BimixedContCont . Bootstrap.MEP.BinBin . CausalDiagramBinBin . CausalDiagramContCont . ECT . Fano.BinBin . FixedBinBinIT . FixedBinContIT . FixedContBinIT . FixedContContIT . FixedDiscrDiscrIT . ICA.BinBin.Grid.Full . ICA.BinBin.Grid.Sample.Uncert . ICA.BinBin.Grid.Sample . ICA.ContCont.MultS.MPC . ICA.ContCont.MultS.PC . ICA.ContCont.MultS . ICA.ContCont.Mult_alt . ICA.Sample.ContCont . ICABinBin . ICABinBinCounterAssum . ICABinCont . ICAContCont . ISTE.ContCont . LongToWide . MICA.Sample.ContCont . MICAContCont . MarginalProbs . MaxEntICABinBin . MaxEntICAContCont . MaxEntSPFBinBin . MinSurrContCont . MixedContContIT . Ovarian . PPE.BinBin . PROC.BinBin . Plot.FixedDiscrDiscrIT . Plot.PredTrialTContCont . Pos.Def.Matrices . Pred.TrialT.ContCont . Prentice . RandVec . Restrictions.BinBin . SPP.BinBin . SPP.BinCont . Schizo . Schizo_Bin . Schizo_BinCont . Schizo_PANSS . Sim.Data.Counterfactuals . Sim.Data.CounterfactualsBinBin . Sim.Data.MTS . Sim.Data.STS . Sim.Data.STSBinBin . Single.Trial.RE.AA . SurvSurv . Test.Mono . TrialLevelIT . TrialLevelMA . TwoStageSurvSurv . UnifixedContCont . UnimixedContCont . comb27.BinBin . fit_model_SurvSurv . ica_SurvSurv_sens . marginal_gof_scr . model_fit_measures . plot.CausalInference . plot.Fano.BinBin . plot.ICA.ContCont.Mult . plot.ICABinBin . plot.ICABinCont . plot.ISTE.ContCont . plot.InformationTheoretic . plot.InformationTheoreticBinCombn . plot.InformationTheoreticSurvSurv . plot.MaxEntContCont . plot.MaxEntICABinBin . plot.MaxEntSPFBinBin . plot.MetaAnalytic . plot.MinSurrContCont . plot.PPE.BinBin . plot.SPPBinBin . plot.SPPBinCont . plot.TrialLevelIT . plot.TrialLevelMA . plot.TwoStageSurvSurv . plot.comb27.BinBin . summary.gen . 
Some associated R codes: AA.MultS.R . BifixedContCont.R . BimixedContCont.R . Bootstrap.MEP.BinBin.R . CausalDiagramBinBin.R . CausalDiagramContCont.R . CbC.R . Data.Processing.R . ECT.R . Fano.BinBin.R . FixedDiscrDiscrIT.R . ICA.BinBin.Grid.Full.R . ICA.BinBin.Grid.Sample.R . ICA.BinBin.Grid.Sample.Uncert.R . ICA.BinCont.R . ICA.Cont.Cont.MultS.R . ICA.Cont.Cont.MultS_alt.R . ICA.ContCont.MultS.MPC.R . ICA.ContCont.MultS.PC.R . ICA.Sample.ContCont.R . ICABinBin.R . ICABinBinCounterAssum.R . ICAContCont.R . ISTE.ContCont.R . LongToWide.R . MICA.Sample.ContCont.R . MICAContCont.R . MarginalProbs.R . MaxEntContCont.R . MaxEntICABinBin.R . MaxEntSPFBinBin.R . MinSurrContCont.R . MixedContContIT.R . PPE.BinBin.R . PROC.BinBin.R . Plot.FixedDiscrDiscrIT.R . Pos.Def.Matrices.R . Pred.TrialT.ContCont.R . Prentice.R . RandVec.R . Restrictions.BinBin.R . SPF.BinCont.R . SPP.BinBin.R . Sim.Data.Counterfactuals.R . Sim.Data.MTS.R . Sim.Data.STS.R . SimDataCounterfactualsBinBin.R . SimDataSTSBinBin.R . Single.Trial.RE.AA.R . Summary.SPF.BinCont.R . SummaryITContCont.R . SummaryMaxEntSPFBinBin.R . SummaryMetaAnalyticMTSContCont.R . SummaryMetaAnalyticSTSContCont.R . SummarySPPBinBin.R . SummaryTrialLevelMA.R . SurvSurv.R . Test.Mono.R . TrialLevelIT.R . TrialLevelMA.R . TwoStageSurvSurv.R . UnifixedContCont.R . UnimixedContCont.R . comb27.BinBin.R . fit_model_SurvSurv.R . goodness_of_fit_SurvSurv.R . log_likelihoods.R . plot.BinContCombnIT.R . plot.Fano.BinBin.R . plot.InfoTheoretic.R . plot.MaxEntContCont.R . plot.MaxEntSPF.BinBin.R . plot.MetaAnalyticMTS.R . plot.MetaAnalyticSTS.R . plot.PPE.BinBin.R . plot.SPPBinCont.R . plot.SurvSurv.R . plot.TrialLevelIT.R . plot.TrialLevelMA.R . plot.TwoStageSurvSurv.R . plot.comb27.BinBin.R . plot_ICABinBin.R . plot_ICABinCont.R . plot_MaxEntICABinBin.R . plot_SPPBinBin.R . sensitivity_analysis_SurvSurv.R . summary.Fano.BinBin.R . summary.FixedDIscrDiscrIT.R . summary.PPE.BinBin.R . summary.SurvSurv.R . summary.TrialLevelIT.R . summary.TwoStageSurvSurv.R . summaryBinContCombnIT.R . summary_ICABinBin.R . summary_ICABinCont.R . summary_MaxEntContCont.R . summary_MaxEntICABinBin.R . utils.R .  Full Surrogate package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

con2aqi  
Calculate the AQI from Pollutant Concentration
To calculate the AQI (Air Quality Index) from pollutant concentration data. O3, PM2.5, PM10, CO, SO ...
Download / Learn more Package Citations See dependency  
bacondecomp  
Goodman-Bacon Decomposition
Decomposition for differences-in-differences with variation in treatment timing from Goodman-Bacon ...
Download / Learn more Package Citations See dependency  
robregcc  
Robust Regression with Compositional Covariates
We implement the algorithm estimating the parameters of the robust regression model with composition ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  

23,092

R Packages

198,677

Dependencies

62,675

Author Associations

23,089

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA