Other packages > Find by keyword >

RSDA  

R to Symbolic Data Analysis
View on CRAN: Click here


Download and install RSDA package within the R console
Install from CRAN:
install.packages("RSDA")

Install from Github:
library("remotes")
install_github("cran/RSDA")

Install by package version:
library("remotes")
install_version("RSDA", "3.2.1")



Attach the package and use:
library("RSDA")
Maintained by
Oldemar Rodriguez
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2013-05-29
Latest Update: 2023-04-22
Description:
Symbolic Data Analysis (SDA) was proposed by professor Edwin Diday in 1987, the main purpose of SDA is to substitute the set of rows (cases) in the data table for a concept (second order statistical unit). This package implements, to the symbolic case, certain techniques of automatic classification, as well as some linear models.
How to cite:
Oldemar Rodriguez (2013). RSDA: R to Symbolic Data Analysis. R package version 3.2.1, https://cran.r-project.org/web/packages/RSDA. Accessed 21 Nov. 2024.
Previous versions and publish date:
1.0 (2013-05-29 17:33), 1.1 (2013-06-30 07:29), 1.2 (2014-03-18 18:20), 1.3 (2015-11-04 01:10), 1.4 (2017-05-30 23:04), 2.0.2 (2017-07-22 00:59), 2.0.3 (2018-02-14 22:08), 2.0.4 (2018-05-01 00:22), 2.0.5 (2018-07-31 01:10), 2.0.7 (2018-10-05 18:10), 2.0.8 (2018-10-11 01:00), 2.0 (2017-06-09 01:07), 3.0.1 (2020-01-21 08:50), 3.0.3 (2020-04-17 00:10), 3.0.4 (2020-06-07 19:40), 3.0.9 (2021-01-27 21:10), 3.0.12 (2022-07-04 22:40), 3.0.13 (2022-07-16 09:30), 3.0 (2019-10-22 07:30), 3.1.0 (2023-04-22 06:10)
Other packages that cited RSDA R package
View RSDA citation profile
Other R packages that RSDA depends, imports, suggests or enhances
Complete documentation for RSDA
Functions, R codes and Examples using the RSDA R package
Some associated functions: Cardiological . Maxima_and_Minima . R2.L . R2.U . RMSE.L . RMSE.U . RSDA . SDS.to.RSDA . SODAS.to.RSDA . Symbolic_mean . Symbolic_median . USCrime . VeterinaryData . abalone . as.data.frame.symbolic_histogram . as.data.frame.symbolic_interval . as.data.frame.symbolic_modal . as.data.frame.symbolic_set . calc.burt.sym . calc.k . calc.matrix.min . cardiologicalv2 . cash-.symbolic_histogram . cash-.symbolic_modal . cash-.symbolic_set . centers.interval.j . centers.interval . cfa.CVPRealz . cfa.Czz . cfa.MatrixZ . cfa.minmax.new . cfa.minmax . cfa.totals . check_quo_duplicated_names . classic.to.sym . cor . cov . data.frame.to.RSDA.inteval.table.j . data.frame.to.RSDA.inteval.table . deter.coefficient . dist.vect.matrix . dist.vect . dot-onAttach . ex1_db2so . ex_cfa1 . ex_cfa2 . ex_mcfa1 . ex_mcfa2 . example1 . example2 . example3 . example4 . example5 . example6 . example7 . extract_data . extract_meta . facedata . format.symbolic_histogram . format.symbolic_interval . format.symbolic_modal . format.symbolic_set . get_cats . get_props . int_prost_test . int_prost_train . interval.centers . interval.histogram.plot . interval.max . interval.min . interval.ranges . is.sym.histogram . is.sym.interval . is.sym.modal . is.sym.set . lynne1 . map_symbolic_tbl . mcfa.scatterplot . method_summary . neighbors.vertex . new.sym.histogram . new.sym.intreval . new.sym.modal . new.sym.set . newSobject . norm.vect . oils . optim.pca.distance.j . optim.pca.variance.j . pca.supplementary.vertex.fun.j . pca.supplementary.vertex.lambda.fun.j . pipe . plot.sym_tsne . plot.sym_umap . plot.symbolic_pca . plot.symbolic_tbl . plotX.slice . process.continue.variable . process.inter.cont.variable . process.mult.nominal.modif.variable . process.mult.nominal.variable . process.nominal.variable . read.sym.table . sd . sub-.sym.data.table . sub-.symbolic_tbl . sym.Interval.distance . sym.circle.plot . sym.continuos.plot . sym.dist.interval . sym.gbm . sym.glm . sym.hist.plot . sym.histogram . sym.interval . sym.interval.pc.limits . sym.interval.pc . sym.interval.pca.limits.new.j . sym.interval.plot . sym.interval.vertex.pca.j . sym.kmeans . sym.knn . sym.lm . sym.mcfa . sym.modal . sym.modal.plot . sym.nnet . sym.pca . sym.predict . sym.predict.symbolic_gbm_cm . sym.predict.symbolic_gbm_crm . sym.predict.symbolic_knn_cm . sym.predict.symbolic_knn_crm . sym.predict.symbolic_nnet_cm . sym.predict.symbolic_nnet_crm . sym.predict.symbolic_rf_cm . sym.predict.symbolic_rf_crm . sym.predict.symbolic_rt_cm . sym.predict.symbolic_rt_crm . sym.predict.symbolic_svm_cm . sym.predict.symbolic_svm_crm . sym.radar.data . sym.radar.plot . sym.rf . sym.rt . sym.scale.interval . sym.scatterplot . sym.set . sym.set.plot . sym.svm . sym.tsne . sym.umap . sym.var . to.v2 . to.v3 . uscrime_int . uscrime_intv2 . var.length . var . variance.princ.curve . vec_ptype_abbr.symbolic_histogram . vec_ptype_abbr.symbolic_interval . vec_ptype_abbr.symbolic_modal . vec_ptype_abbr.symbolic_set . vec_ptype_full.symbolic_histogram . vec_ptype_full.symbolic_interval . vec_ptype_full.symbolic_modal . vec_ptype_full.symbolic_set . vertex.interval.new.j . vertex.interval . vertex.pca.j . write.sym.table . 
Some associated R codes: RMSE.R . RSDA.R . centers_interval.R . centers_interval_j.R . data.R . data_frame_to_RSDA_inteval_table_j.R . deter_coefficient.R . dist_interval.R . dist_vect.R . dist_vect_matrix.R . interval_histogram_plot.R . mcfa_scatterplot.R . neighbors_vertex.R . norm_vect.R . optim_pca_distance_j.R . plot.symbolic_df.R . r2.R . read_sym_table.R . sds_to_rsda.R . sodas_to_rsda.R . sym.data.table_subset.R . sym.predict.R . sym_circle_plot.R . sym_glm.R . sym_interval_pc.R . sym_interval_pc_limits.R . sym_interval_pca.R . sym_interval_pca_limits_new_j.R . sym_interval_tsne.R . sym_interval_umap.R . sym_kmeans.R . sym_lm.R . sym_mcfa.R . sym_radar_plot.R . sym_regression.R . sym_scatterplot.R . sym_var.R . symbolic_df.R . symbolic_objects.R . utils-pipe.R . variance_princ_curve.R . vertex_interval.R . vertex_interval_new_j.R . vertex_pca_j.R . write_sym_table.R . zzz.R .  Full RSDA package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

RcppHNSW  
'Rcpp' Bindings for 'hnswlib', a Library for Approximate Nearest Neighbors
'Hnswlib' is a C++ library for Approximate Nearest Neighbors. This package provides a minimal R int ...
Download / Learn more Package Citations See dependency  
SCBiclust  
Identifies Mean, Variance, and Hierarchically Clustered Biclusters
Identifies a bicluster, a submatrix of the data such that the features and observations within the s ...
Download / Learn more Package Citations See dependency  
crossrun  
Joint Distribution of Number of Crossings and Longest Run
Joint distribution of number of crossings and the longest run in a series of independent Bernoulli ...
Download / Learn more Package Citations See dependency  
kgschart  
KGS Rank Graph Parser
Restore underlining numeric data from rating history graph of KGS (an online platform of the game o ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
deductive  
Data Correction and Imputation Using Deductive Methods
Attempt to repair inconsistencies and missing values in data records by using information from vali ...
Download / Learn more Package Citations See dependency  

23,229

R Packages

199,929

Dependencies

62,984

Author Associations

23,230

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA