Other packages > Find by keyword >

ROCit  

Performance Assessment of Binary Classifier with Visualization
View on CRAN: Click here


Download and install ROCit package within the R console
Install from CRAN:
install.packages("ROCit")

Install from Github:
library("remotes")
install_github("cran/ROCit")

Install by package version:
library("remotes")
install_version("ROCit", "2.1.2")



Attach the package and use:
library("ROCit")
Maintained by
Md Riaz Ahmed Khan
[Scholar Profile | Author Map]
First Published: 2019-01-31
Latest Update: 2020-06-14
Description:
Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.
How to cite:
Md Riaz Ahmed Khan (2019). ROCit: Performance Assessment of Binary Classifier with Visualization. R package version 2.1.2, https://cran.r-project.org/web/packages/ROCit. Accessed 11 Apr. 2025.
Previous versions and publish date:
1.1.1 (2019-01-31 00:23), 2.1.1 (2020-06-14 12:20)
Other packages that cited ROCit R package
View ROCit citation profile
Other R packages that ROCit depends, imports, suggests or enhances
Complete documentation for ROCit
Downloads during the last 30 days
03/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/09Downloads for ROCit20253035404550556065707580TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
Rwtss  
Client for Web Time-Series Service
Allows remote access to satellite image time series provided by the web time series service (WTSS) ...
Download / Learn more Package Citations See dependency  
extrafrail  
Estimation and Additional Tools for Alternative Shared Frailty Models
Provide estimation and data generation tools for some new multivariate frailty models. This version ...
Download / Learn more Package Citations See dependency  
GenAlgo  
Classes and Methods to Use Genetic Algorithms for Feature Selection
Defines classes and methods that can be used to implement genetic algorithms for feature selection. ...
Download / Learn more Package Citations See dependency  
multIntTestFunc  
Provides Test Functions for Multivariate Integration
Provides implementations of functions that can be used to test multivariate integration routines. T ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA