Other packages > Find by keyword >

RKEEL  

Using 'KEEL' in R Code
View on CRAN: Click here


Download and install RKEEL package within the R console
Install from CRAN:
install.packages("RKEEL")

Install from Github:
library("remotes")
install_github("cran/RKEEL")

Install by package version:
library("remotes")
install_version("RKEEL", "1.3.4")



Attach the package and use:
library("RKEEL")
Maintained by
Jose M. Moyano
[Scholar Profile | Author Map]
First Published: 2016-01-31
Latest Update: 2023-08-19
Description:
'KEEL' is a popular 'Java' software for a large number of different knowledge data discovery tasks. This package takes the advantages of 'KEEL' and R, allowing to use 'KEEL' algorithms in simple R code. The implemented R code layer between R and 'KEEL' makes easy both using 'KEEL' algorithms in R as implementing new algorithms for 'RKEEL' in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about 'KEEL', see .
How to cite:
Jose M. Moyano (2016). RKEEL: Using 'KEEL' in R Code. R package version 1.3.4, https://cran.r-project.org/web/packages/RKEEL. Accessed 11 Apr. 2025.
Previous versions and publish date:
1.1.5 (2016-01-31 16:36), 1.1.6 (2016-02-02 12:46), 1.1.15 (2017-01-11 08:59), 1.1.17 (2017-01-17 13:28), 1.1.18 (2017-01-18 18:07), 1.1.19 (2017-01-26 12:08), 1.1.20 (2017-01-31 09:10), 1.1.21 (2017-02-02 11:44), 1.1.22 (2017-08-10 17:13), 1.2.1 (2018-07-06 13:30), 1.2.2 (2018-07-16 20:40), 1.2.3 (2018-09-25 10:40), 1.2.5 (2018-12-19 21:30), 1.2.7 (2019-01-18 11:40), 1.3.1 (2019-07-18 13:40), 1.3.2 (2020-03-19 10:20), 1.3.3 (2021-05-13 16:12)
Other packages that cited RKEEL R package
View RKEEL citation profile
Other R packages that RKEEL depends, imports, suggests or enhances
Complete documentation for RKEEL
Functions, R codes and Examples using the RKEEL R package
Some associated functions: ABB-IEP-FS . ANR-F . ART-C . AdaBoost-I . AdaBoostNC-C . Alatasetal-A . Alcalaetal-A . AllKNN-TSS . AllPosible-MV . Apriori-A . AssociationRulesAlgorithm . AssociativeClassificationAlgorithm . BNGE-C . BSE-C . Bayesian-D . Bojarczuk_GP-C . C45-C . C45Rules-C . C45_Binarization-C . CART-C . CART-R . CBA-C . CFAR-C . CFKNN-C . CHC-C . CMAR-C . CNN-C . CPAR-C . CPW-C . CW-C . C_SVM-C . CamNN-C . CenterNN-C . ClassificationAlgorithm . ClassificationResults . CleanAttributes-TR . ClusterAnalysis-D . DSM-C . DT_GA-C . DecimalScaling-TR . Decr-RBFN-C . Deeps-C . EARMGA-A . EPSILON_SVR-R . Eclat-A . FCRA-C . FPgrowth-A . FRNN-C . FRSBM-R . FURIA-C . Falco_GP-C . FuzzyApriori-A . FuzzyFARCHD-C . FuzzyKNN-C . FuzzyNPC-C . GANN-C . GAR-A . GENAR-A . GFS-AdaBoost-C . GFS-GP-R . GFS-GSP-R . GFS-LogitBoost-C . GFS-RB-MF-R . GeneticFuzzyApriori-A . GeneticFuzzyAprioriDC-A . ID3-C . ID3-D . IF_KNN-C . Ignore-MV . ImbalancedClassificationAlgorithm . Incr-RBFN-C . IterativePartitioningFilter-F . JFKNN-C . KMeans-MV . KNN-C . KNN-MV . KSNN-C . KStar-C . KeelAlgorithm . Kernel-C . LDA-C . LVF-IEP-FS . LinearLMS-C . LinearLMS-R . Logistic-C . M5-R . M5Rules-R . MLP-BP-C . MLP-BP-R . MODENAR-A . MOEA_Ghosh-A . MOPNAR-A . MinMax-TR . ModelCS-TSS . MostCommon-MV . NB-C . NICGAR-A . NM-C . NNEP-C . NU_SVM-C . NU_SVR-R . Nominal2Binary-TR . PART-C . PDFC-C . PFKNN-C . PNN-C . POP-TSS . PRISM-C . PSO_ACO-C . PSRCG-TSS . PUBLIC-C . PW-C . PolQuadraticLMS-C . PolQuadraticLMS-R . PreprocessAlgorithm . Proportional-D . QAR_CIP_NSGAII-A . QDA-C . RBFN-C . RBFN-R . RISE-C . RegressionAlgorithm . RegressionResults . Relief-FS . Ripper-C . SFS-IEP-FS . SGA-C . SMO-C . SSGA-Integer-knn-FS . SaturationFilter-F . Shrink-C . Slipper-C . Tan_GP-C . Thrift-R . UniformFrequency-D . UniformWidth-D . VWFuzzyKNN-C . WM-R . ZScore-TR . getAttributeLinesFromDataframes . hasContinuousData . hasMissingValues . isMultiClass . loadKeelDataset . readKeel . runCV . runParallel . runSequential . writeDatFromDataframe . writeDatFromDataframes . 
Some associated R codes: ABB-IEP-FS.R . ANR-F.R . ART-C.R . AdaBoost-I.R . AdaBoostNC-C.R . Alatasetal-A.R . Alcalaetal-A.R . AllKNN-TSS.R . AllPosible-MV.R . Apriori-A.R . AssociationRulesAlgorithm.R . AssociativeClassificationAlgorithm.R . BNGE-C.R . BSE-C.R . Bayesian-D.R . Bojarczuk_GP-C.R . C45-C.R . C45Rules-C.R . C45_Binarization-C.R . CART-C.R . CART-R.R . CBA-C.R . CFAR-C.R . CFKNN-C.R . CHC-C.R . CMAR-C.R . CNN-C.R . CPAR-C.R . CPW-C.R . CW-C.R . C_SVM-C.R . CamNN-C.R . CenterNN-C.R . ClassificationAlgorithm.R . ClassificationResults.R . CleanAttributes-TR.R . ClusterAnalysis-D.R . DSM-C.R . DT_GA-C.R . DecimalScaling-TR.R . Decr-RBFN-C.R . Deeps-C.R . EARMGA-A.R . EPSILON_SVR-R.R . Eclat-A.R . FCRA-C.R . FPgrowth-A.R . FRNN-C.R . FRSBM-R.R . FURIA-C.R . Falco_GP-C.R . FuzzyApriori-A.R . FuzzyFARCHD-C.R . FuzzyKNN-C.R . FuzzyNPC-C.R . GANN-C.R . GAR-A.R . GENAR-A.R . GFS-AdaBoost-C.R . GFS-GP-R.R . GFS-GSP-R.R . GFS-LogitBoost-C.R . GFS-RB-MF-R.R . GeneticFuzzyApriori-A.R . GeneticFuzzyAprioriDC-A.R . ID3-C.R . ID3-D.R . IF_KNN-C.R . Ignore-MV.R . ImbalancedClassificationAlgorithm.R . Incr-RBFN-C.R . IterativePartitioningFilter-F.R . JFKNN-C.R . KMeans-MV.R . KNN-C.R . KNN-MV.R . KSNN-C.R . KStar-C.R . KeelAlgorithm.R . KeelUtils.R . Kernel-C.R . LDA-C.R . LVF-IEP-FS.R . LinearLMS-C.R . LinearLMS-R.R . Logistic-C.R . M5-R.R . M5Rules-R.R . MLP-BP-C.R . MLP-BP-R.R . MODENAR-A.R . MOEA_Ghosh-A.R . MOPNAR-A.R . MinMax-TR.R . ModelCS-TSS.R . MostCommon-MV.R . NB-C.R . NICGAR-A.R . NM-C.R . NNEP-C.R . NU_SVM-C.R . NU_SVR-R.R . Nominal2Binary-TR.R . PART-C.R . PDFC-C.R . PFKNN-C.R . PNN-C.R . POP-TSS.R . PRISM-C.R . PSO_ACO-C.R . PSRCG-TSS.R . PUBLIC-C.R . PW-C.R . PolQuadraticLMS-C.R . PolQuadraticLMS-R.R . PreprocessAlgorithm.R . Proportional-D.R . QAR_CIP_NSGAII-A.R . QDA-C.R . RBFN-C.R . RBFN-R.R . RISE-C.R . RegressionAlgorithm.R . RegressionResults.R . Relief-FS.R . Ripper-C.R . SFS-IEP-FS.R . SGA-C.R . SMO-C.R . SSGA-Integer-knn-FS.R . SaturationFilter-F.R . Shrink-C.R . Slipper-C.R . Tan_GP-C.R . Thrift-R.R . UniformFrequency-D.R . UniformWidth-D.R . VWFuzzyKNN-C.R . WM-R.R . ZScore-TR.R .  Full RKEEL package functions and examples
Downloads during the last 30 days
03/1203/1303/1403/1503/1603/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/10Downloads for RKEEL0510152025303540TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
GenAlgo  
Classes and Methods to Use Genetic Algorithms for Feature Selection
Defines classes and methods that can be used to implement genetic algorithms for feature selection. ...
Download / Learn more Package Citations See dependency  
extrafrail  
Estimation and Additional Tools for Alternative Shared Frailty Models
Provide estimation and data generation tools for some new multivariate frailty models. This version ...
Download / Learn more Package Citations See dependency  
multIntTestFunc  
Provides Test Functions for Multivariate Integration
Provides implementations of functions that can be used to test multivariate integration routines. T ...
Download / Learn more Package Citations See dependency  
Rwtss  
Client for Web Time-Series Service
Allows remote access to satellite image time series provided by the web time series service (WTSS) ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA