Other packages > Find by keyword >

RJafroc  

Artificial Intelligence Systems and Observer Performance
View on CRAN: Click here


Download and install RJafroc package within the R console
Install from CRAN:
install.packages("RJafroc")

Install from Github:
library("remotes")
install_github("cran/RJafroc")

Install by package version:
library("remotes")
install_version("RJafroc", "2.1.2")



Attach the package and use:
library("RJafroc")
Maintained by
Dev Chakraborty
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-04-24
Latest Update: 2022-11-08
Description:
Analyzing the performance of artificial intelligence (AI) systems/algorithms characterized by a 'search-and-report' strategy. Historically observer performance has dealt with measuring radiologists' performances in search tasks, e.g., searching for lesions in medical images and reporting them, but the implicit location information has been ignored. The implemented methods apply to analyzing the absolute and relative performances of AI systems, comparing AI performance to a group of human readers or optimizing the reporting threshold of an AI system. In addition to performing historical receiver operating receiver operating characteristic (ROC) analysis (localization information ignored), the software also performs free-response receiver operating characteristic (FROC) analysis, where lesion localization information is used. A book using the software has been published: Chakraborty DP: Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples, Taylor-Francis LLC; 2017: . Online updates to this book, which use the software, are at , and at . Supported data collection paradigms are the ROC, FROC and the location ROC (LROC). ROC data consists of single ratings per images, where a rating is the perceived confidence level that the image is that of a diseased patient. An ROC curve is a plot of true positive fraction vs. false positive fraction. FROC data consists of a variable number (zero or more) of mark-rating pairs per image, where a mark is the location of a reported suspicious region and the rating is the confidence level that it is a real lesion. LROC data consists of a rating and a location of the most suspicious region, for every image. Four models of observer performance, and curve-fitting software, are implemented: the binormal model (BM), the contaminated binormal model (CBM), the correlated contaminated binormal model (CORCBM), and the radiological search model (RSM). Unlike the binormal model, CBM, CORCBM and RSM predict 'proper' ROC curves that do not inappropriately cross the chance diagonal. Additionally, RSM parameters are related to search performance (not measured in conventional ROC analysis) and classification performance. Search performance refers to finding lesions, i.e., true positives, while simultaneously not finding false positive locations. Classification performance measures the ability to distinguish between true and false positive locations. Knowing these separate performances allows principled optimization of reader or AI system performance. This package supersedes Windows JAFROC (jackknife alternative FROC) software V4.2.1, . Package functions are organized as follows. Data file related function names are preceded by 'Df', curve fitting functions by 'Fit', included data sets by 'dataset', plotting functions by 'Plot', significance testing functions by 'St', sample size related functions by 'Ss', data simulation functions by 'Simulate' and utility functions by 'Util'. Implemented are figures of merit (FOMs) for quantifying performance and functions for visualizing empirical or fitted operating characteristics: e.g., ROC, FROC, alternative FROC (AFROC) and weighted AFROC (wAFROC) curves. For fully crossed study designs significance testing of reader-averaged FOM differences between modalities is implemented via either Dorfman-Berbaum-Metz or the Obuchowski-Rockette methods. Also implemented is single treatment analysis, which allows comparison of performance of a group of radiologists to a specified value, or comparison of AI to a group of radiologists interpreting the same cases. Crossed-modality analysis is implemented wherein there are two crossed treatment factors and the aim is to determined performance in each treatment factor averaged over all levels of the second factor. Sample size estimation tools are provided for ROC and FROC studies; these use estimates of the relevant variances from a pilot study to predict required numbers of readers and cases in a pivotal study to achieve the desired power. Utility and data file manipulation functions allow data to be read in any of the currently used input formats, including Excel, and the results of the analysis can be viewed in text or Excel output files. The methods are illustrated with several included datasets from the author's collaborations. This update includes improvements to the code, some as a result of user-reported bugs and new feature requests, and others discovered during ongoing testing and code simplification.
How to cite:
Dev Chakraborty (2015). RJafroc: Artificial Intelligence Systems and Observer Performance. R package version 2.1.2, https://cran.r-project.org/web/packages/RJafroc. Accessed 21 Dec. 2024.
Previous versions and publish date:
0.0.1 (2015-04-24 08:18), 0.1.0 (2015-07-30 06:05), 0.1.1 (2015-08-14 20:13), 1.0.0 (2018-02-04 22:40), 1.0.1 (2018-02-18 18:41), 1.0.2 (2018-05-31 23:40), 1.1.0 (2018-11-14 19:30), 1.2.0 (2019-07-31 13:20), 1.3.1 (2020-01-14 00:10), 1.3.2 (2020-03-06 19:40), 2.0.1 (2020-12-15 18:00), 2.1.0 (2022-07-24 17:10), 2.1.1 (2022-08-12 22:30)
Other packages that cited RJafroc R package
View RJafroc citation profile
Other R packages that RJafroc depends, imports, suggests or enhances
Complete documentation for RJafroc
Functions, R codes and Examples using the RJafroc R package
Some associated functions: ChisqrGoodnessOfFit . Df2RJafrocDataset . DfBinDataset . DfCreateCorCbmDataset . DfExtractCorCbmDataset . DfExtractDataset . DfFroc2Lroc . DfFroc2Roc . DfLroc2Froc . DfLroc2Roc . DfReadCrossedModalities . DfReadDataFile . DfSaveDataFile . DfWriteExcelDataFile . FitBinormalRoc . FitCbmRoc . FitCorCbm . FitRsmRoc . PlotBinormalFit . PlotCbmFit . PlotEmpiricalOperatingCharacteristics . PlotRsmOperatingCharacteristics . RJafroc-package . RSM_LLF . RSM_NLF . RSM_pdfD . RSM_pdfN . RSM_wLLF . RSM_xROC . RSM_yROC . SimulateCorCbmDataset . SimulateFrocDataset . SimulateFrocFromLrocDataset . SimulateLrocDataset . SimulateRocDataset . SsFrocNhRsmModel . SsPowerGivenJK . SsPowerGivenJKDbmVarCom . SsPowerGivenJKOrVarCom . SsPowerTable . SsSampleSizeKGivenJ . StSignificanceTesting . StSignificanceTestingCadVsRad . StSignificanceTestingCrossedModalities . UtilAnalyticalAucsRSM . UtilAucBinormal . UtilAucCBM . UtilAucPROPROC . UtilDBM2ORVarCom . UtilFigureOfMerit . UtilIntrinsic2RSM . UtilLesionDistrVector . UtilLesionWeightsMatrix . UtilMeanSquares . UtilOR2DBMVarCom . UtilORVarComponentsFactorial . UtilOutputReport . UtilPseudoValues . UtilRSM2Intrinsic . UtilVarComponentsDBM . dataset01 . dataset02 . dataset03 . dataset04 . dataset05 . dataset06 . dataset07 . dataset08 . dataset09 . dataset10 . dataset11 . dataset12 . dataset13 . dataset14 . datasetBinned123 . datasetBinned124 . datasetBinned125 . datasetCadLroc . datasetCadSimuFroc . datasetCrossedModality . datasetDegenerate . datasetFROCSpC . datasetROI . isBinnedDataset . isValidDataset . 
Some associated R codes: ChisqrGoodnessOfFit.R . Df2RJafrocDataset.R . DfBinDataset.R . DfCreateCorCbmDataset.R . DfExtractCorCbmDataset.R . DfExtractDataset.R . DfFroc2Lroc.R . DfFroc2Roc.R . DfLroc2Froc.R . DfLroc2Roc.R . DfReadCrossedModalities.R . DfReadDataFile.R . DfReadIowaFormats.R . DfSaveDataFile.R . DfWriteExcelDataFile.R . EnvironmentVariables.R . FitBinormalRoc.R . FitCbmRoc.R . FitCorCbm.R . FitRsmRoc.R . IgnoreSimulateRoiDataset.R . ORAnalysisFactorial.R . ORAnalysisSplitPlot.R . PlotBinormalFit.R . PlotCBMFit.R . PlotEmpiricalOperatingCharacteristics.R . PlotRsmOperatingCharacteristics.R . PlotSupport.R . RcppExports.R . ReadJAFROCNewFormat.R . ReadJAFROCOldFormat.R . SimulateCorCbmDataset.R . SimulateFrocDataset.R . SimulateFrocFromLrocDataset.R . SimulateLrocDataset.R . SimulateRocDataset.R . SsFrocNhRsmModel.R . SsPowerGivenJK.R . SsPowerTable.R . SsSampleSizeKGivenJ.R . StDBMHAnalysis.R . StDBMSummaryFRRC.R . StDBMSummaryRRFC.R . StDBMSummaryRRRC.R . StORSummaryFRRC.R . StORSummaryRRFC.R . StORSummaryRRRC.R . StOldCode.R . StSignificanceTesting.R . StSignificanceTestingCadVsRad.R . StSignificanceTestingCrossedModalities.R . Transforms.R . UtilAnalyticalAucsRSM.R . UtilAnalyticalAucsRSM_R.R . UtilAucBinormal.R . UtilAucCBM.R . UtilAucPROPROC.R . UtilDBM2ORVarCom.R . UtilFigureOfMerit.R . UtilFigureOfMerit_ij.R . UtilIntrinsic2RSM.R . UtilLesionDistrVector.R . UtilLesionWeightsMatrix.R . UtilMeanSquares.R . UtilOR2DBMVarCom.R . UtilORVarComponentsFactorial.R . UtilOutputReport.R . UtilOutputReportExcelFileDBMH.R . UtilOutputReportExcelFileORH.R . UtilOutputReportTextFileDBMH.R . UtilOutputReportTextFileORH.R . UtilPseudoValues.R . UtilRSM2Intrinsic.R . UtilVarComponentsDBM.R . addArguments.R . dataset2ratings.R . datasets.R . isValidDataset.R . isValidFom.R . rsmFormulae.R .  Full RJafroc package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
CIFsmry  
Weighted summary of cumulative incidence functions
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based ...
Download / Learn more Package Citations See dependency  
batteryreduction  
An R Package for Data Reduction by Battery Reduction
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to f ...
Download / Learn more Package Citations See dependency  
SEIRfansy  
Extended Susceptible-Exposed-Infected-Recovery Model
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symp ...
Download / Learn more Package Citations See dependency  
helda  
Preprocess Data and Get Better Insights from Machine Learning Models
The main focus is on preprocessing and data visualization of machine learning models performances.So ...
Download / Learn more Package Citations See dependency  
condGEE  
Parameter Estimation in Conditional GEE for Recurrent Event Gap Times
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a condition ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA