Other packages > Find by keyword >

RISCA  

Causal Inference and Prediction in Cohort-Based Analyses
View on CRAN: Click here


Download and install RISCA package within the R console
Install from CRAN:
install.packages("RISCA")

Install from Github:
library("remotes")
install_github("cran/RISCA")

Install by package version:
library("remotes")
install_version("RISCA", "1.0.7")



Attach the package and use:
library("RISCA")
Maintained by
Yohann Foucher
[Scholar Profile | Author Map]
First Published: 2019-08-05
Latest Update: 2024-01-24
Description:
Numerous functions for cohort-based analyses, either for prediction or causal inference. For causal inference, it includes Inverse Probability Weighting and G-computation for marginal estimation of an exposure effect when confounders are expected. We deal with binary outcomes, times-to-events, competing events, and multi-state data. For multistate data, semi-Markov model with interval censoring may be considered, and we propose the possibility to consider the excess of mortality related to the disease compared to reference lifetime tables. For predictive studies, we propose a set of functions to estimate time-dependent receiver operating characteristic (ROC) curves with the possible consideration of right-censoring times-to-events or the presence of confounders. Finally, several functions are available to assess time-dependent ROC curves or survival curves from aggregated data.
How to cite:
Yohann Foucher (2019). RISCA: Causal Inference and Prediction in Cohort-Based Analyses. R package version 1.0.7, https://cran.r-project.org/web/packages/RISCA. Accessed 16 Apr. 2025.
Previous versions and publish date:
0.8.1 (2020-03-31 23:10), 0.8.2 (2020-04-05 02:00), 0.8 (2019-08-05 13:00), 0.9 (2020-11-18 21:20), 1.0.1 (2022-05-02 15:40), 1.0.3 (2022-11-21 23:00), 1.0.4 (2023-03-22 19:50), 1.0.5 (2024-03-22 16:30), 1.0.6 (2025-01-20 18:02)
Other packages that cited RISCA R package
View RISCA citation profile
Other R packages that RISCA depends, imports, suggests or enhances
Complete documentation for RISCA
Functions, R codes and Examples using the RISCA R package
Some associated functions: aft.gamma . aft.ggamma . aft.llogis . aft.weibull . auc . cox.aic . cox.all . cox.en . cox.lasso . cox.ridge . dataCSL . dataDIVAT1 . dataDIVAT2 . dataDIVAT3 . dataDIVAT4 . dataDIVAT5 . dataFTR . dataHepatology . dataKTFS . dataKi67 . dataOFSEP . dataSTR . differentiation . expect.utility1 . expect.utility2 . fr.ratetable . gc.logistic . gc.sl.binary . gc.sl.time . gc.survival . hr.sl.time . ipw.log.rank . ipw.survival . lines.rocrisca . lrs.multistate . markov.3states . markov.3states.rsadd . markov.4states . markov.4states.rsadd . metric . mixture.2states . nnet.time . ph.exponential . ph.gompertz . plot.rocrisca . plot.sl.time . plot.survrisca . port . predict.cox . predict.flexsurv . predict.mixture.2states . predict.nnet.time . predict.rf.time . predict.sl.time . rf.time . rmst . roc.binary . roc.net . roc.prognostic.aggregate . roc.prognostic.individual . roc.summary . roc.time . semi.markov.3states.ic . semi.markov.3states . semi.markov.3states.rsadd . semi.markov.4states . semi.markov.4states.rsadd . sl.time . summary.sl.time . survival.mr . survival.summary . survival.summary.strata . tune.cox.aic . tune.cox.en . tune.cox.lasso . tune.cox.ridge . tune.nnet.time . tune.rf.time . 
Some associated R codes: aft.gamma.R . aft.ggamma.R . aft.llogis.R . aft.weibull.R . auc.R . cox.aic.R . cox.all.R . cox.en.R . cox.lasso.R . cox.ridge.R . differentiation.R . expect.utility1.R . expect.utility2.R . gc.logistic.R . gc.sl.binary.R . gc.sl.time.R . gc.survival.R . hr.sl.time.R . ipw.log.rank.R . ipw.survival.R . lines.rocrisca.R . lrs.multistate.R . markov.3states.R . markov.3states.rsadd.R . markov.4states.R . markov.4states.rsadd.R . metric.R . mixture.2states.R . nnet.time.R . ph.exponential.R . ph.gompertz.R . plot.rocrisca.R . plot.sl.time.R . plot.survrisca.R . port.R . pred.mixture.2states.R . predict.cox.R . predict.flexsurv.R . predict.nnet.time.R . predict.rf.time.R . predict.sl.time.R . rf.time.R . rmst.R . roc.binary.R . roc.net.R . roc.prognostic.aggregate.R . roc.prognostic.individual.R . roc.summary.R . roc.time.R . semi.markov.3states.R . semi.markov.3states.ic.R . semi.markov.3states.rsadd.R . semi.markov.4states.R . semi.markov.4states.rsadd.R . sl.time.R . summary.sl.time.R . survival.mr.R . survival.summary.R . survival.summary.strata.R . tune.cox.aic.R . tune.cox.en.R . tune.cox.lasso.R . tune.cox.ridge.R . tune.nnet.time.R . tune.rf.time.R .  Full RISCA package functions and examples
Downloads during the last 30 days
03/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/14Downloads for RISCA051015202530354045TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA