Other packages > Find by keyword >

RHPCBenchmark  

Benchmarks for High-Performance Computing Environments
View on CRAN: Click here


Download and install RHPCBenchmark package within the R console
Install from CRAN:
install.packages("RHPCBenchmark")

Install from Github:
library("remotes")
install_github("cran/RHPCBenchmark")

Install by package version:
library("remotes")
install_version("RHPCBenchmark", "0.1.0")



Attach the package and use:
library("RHPCBenchmark")
Maintained by
James McCombs
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2017-05-23
Latest Update: 2017-05-23
Description:
Microbenchmarks for determining the run time performance of aspects of the R programming environment and packages relevant to high-performance computation. The benchmarks are divided into three categories: dense matrix linear algebra kernels, sparse matrix linear algebra kernels, and machine learning functionality.
How to cite:
James McCombs (2017). RHPCBenchmark: Benchmarks for High-Performance Computing Environments. R package version 0.1.0, https://cran.r-project.org/web/packages/RHPCBenchmark. Accessed 21 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited RHPCBenchmark R package
View RHPCBenchmark citation profile
Other R packages that RHPCBenchmark depends, imports, suggests or enhances
Complete documentation for RHPCBenchmark
Functions, R codes and Examples using the RHPCBenchmark R package
Some associated functions: CholeskyAllocator . CholeskyMicrobenchmark . ClaraClusteringMicrobenchmark . ClusteringAllocator . ClusteringMicrobenchmark . ComputeAverageTime . ComputeStandardDeviation . CrossprodAllocator . CrossprodMicrobenchmark . DeformtransAllocator . DeformtransMicrobenchmark . DenseMatrixMicrobenchmark . DeterminantAllocator . DeterminantMicrobenchmark . EigenAllocator . EigenMicrobenchmark . GenerateClusterData . GetClusteringDefaultMicrobenchmarks . GetClusteringExampleMicrobenchmarks . GetConfigurableEnvParameter . GetDenseMatrixDefaultMicrobenchmarks . GetDenseMatrixExampleMicrobenchmarks . GetNumberOfThreads . GetSparseCholeskyDefaultMicrobenchmarks . GetSparseCholeskyExampleMicrobenchmarks . GetSparseLuDefaultMicrobenchmarks . GetSparseMatrixVectorDefaultMicrobenchmarks . GetSparseMatrixVectorExampleMicrobenchmarks . GetSparseQrDefaultMicrobenchmarks . LsfitAllocator . LsfitMicrobenchmark . MatmatAllocator . MatmatMicrobenchmark . MatvecAllocator . MatvecMicrobenchmark . MicrobenchmarkClusteringKernel . MicrobenchmarkDenseMatrixKernel . MicrobenchmarkSparseMatrixKernel . PamClusteringMicrobenchmark . PerformClusteringMicrobenchmarking . PerformSparseMatrixKernelMicrobenchmarking . PrintClusteringMicrobenchmarkResults . PrintDenseMatrixMicrobenchmarkResults . PrintSparseMatrixMicrobenchmarkResults . QrAllocator . QrMicrobenchmark . RHPCBenchmark . RunDenseMatrixBenchmark . RunMachineLearningBenchmark . RunSparseMatrixBenchmark . SolveAllocator . SolveMicrobenchmark . SparseCholeskyAllocator . SparseCholeskyMicrobenchmark . SparseLuAllocator . SparseLuMicrobenchmark . SparseMatrixMicrobenchmark . SparseMatrixVectorAllocator . SparseMatrixVectorMicrobenchmark . SparseQrAllocator . SparseQrMicrobenchmark . SvdAllocator . SvdMicrobenchmark . TransposeAllocator . TransposeMicrobenchmark . WriteClusteringPerformanceResultsCsv . WriteDenseMatrixPerformanceResultsCsv . WriteSparseMatrixPerformanceResultsCsv . 
Some associated R codes: RHPCBenchmark.R . benchmarking_utils.R . classes.R . dense_matrix_benchmark.R . dense_matrix_kernels.R . initialize_defaults.R . machine_learning_benchmark.R . machine_learning_kernels.R . microbenchmark_clustering_kernel.R . microbenchmark_dense_matrix_kernel.R . microbenchmark_sparse_matrix_kernel.R . sparse_matrix_benchmark.R . sparse_matrix_kernels.R .  Full RHPCBenchmark package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

batteryreduction  
An R Package for Data Reduction by Battery Reduction
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to f ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
SEIRfansy  
Extended Susceptible-Exposed-Infected-Recovery Model
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symp ...
Download / Learn more Package Citations See dependency  
condGEE  
Parameter Estimation in Conditional GEE for Recurrent Event Gap Times
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a condition ...
Download / Learn more Package Citations See dependency  
helda  
Preprocess Data and Get Better Insights from Machine Learning Models
The main focus is on preprocessing and data visualization of machine learning models performances.So ...
Download / Learn more Package Citations See dependency  
CIFsmry  
Weighted summary of cumulative incidence functions
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA