Other packages > Find by keyword >

RCTS  

Clustering Time Series While Resisting Outliers
View on CRAN: Click here


Download and install RCTS package within the R console
Install from CRAN:
install.packages("RCTS")

Install from Github:
library("remotes")
install_github("cran/RCTS")

Install by package version:
library("remotes")
install_version("RCTS", "0.2.4")



Attach the package and use:
library("RCTS")
Maintained by
Ewoud Heyndels
[Scholar Profile | Author Map]
First Published: 2022-06-20
Latest Update: 2023-05-18
Description:
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) . The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
How to cite:
Ewoud Heyndels (2022). RCTS: Clustering Time Series While Resisting Outliers. R package version 0.2.4, https://cran.r-project.org/web/packages/RCTS. Accessed 16 Apr. 2025.
Previous versions and publish date:
0.2.2 (2022-06-20 18:20), 0.2.3 (2022-09-14 09:40)
Other packages that cited RCTS R package
View RCTS citation profile
Other R packages that RCTS depends, imports, suggests or enhances
Complete documentation for RCTS
Functions, R codes and Examples using the RCTS R package
Some associated functions: LMROB . OF_vectorized3 . OF_vectorized_helpfunction3 . RCTS . X_dgp3 . Y_dgp3 . adapt_X_estimating_less_variables . adapt_pic_with_sigma2maxmodel . add_configuration . add_metrics . add_pic . add_pic_parallel . beta_true_heterogroups . calculate_FL_group_estimated . calculate_FL_group_true . calculate_PIC . calculate_PIC_term1 . calculate_TN_factor . calculate_VCsquared . calculate_W . calculate_XB_estimated . calculate_XB_true . calculate_Z_common . calculate_Z_group . calculate_best_config . calculate_error_term . calculate_errors_virtual_groups . calculate_lambda . calculate_lambda_group . calculate_lgfg . calculate_mse_beta . calculate_obj_for_g . calculate_sigma2 . calculate_sigma2maxmodel . calculate_virtual_factor_and_lambda_group . check_stopping_rules . clustering_with_robust_distances . create_covMat_crosssectional_dependence . create_data_dgp2 . create_true_beta . define_C_candidates . define_configurations . define_kg_candidates . define_number_subsets . define_object_for_initial_clustering_macropca . define_rho_parameters . determine_beta . determine_robust_lambda . df_results_example . do_we_estimate_common_factors . do_we_estimate_group_factors . estimate_algorithm . estimate_beta . estimate_factor . estimate_factor_group . evade_crashes_macropca . evade_floating_point_errors . factor_group_true_dgp3 . fill_rc . fill_rcj . final_estimations_filter_kg . g_true_dgp3 . generate_Y . generate_grouped_factorstructure . get_best_configuration . get_convergence_speed . get_final_estimation . grid_add_variables . handleNA . handleNA_LG . handle_macropca_errors . initialise_X . initialise_beta . initialise_clustering . initialise_commonfactorstructure_macropca . initialise_df_pic . initialise_df_results . initialise_rc . initialise_rcj . iterate . kg_candidates_expand . lambda_group_true_dgp3 . make_df_pic_parallel . make_df_results_parallel . make_subsamples . matrixnorm . mse_heterogeneous_groups . parallel_algorithm . plot_VCsquared . prepare_for_robpca . reassign_if_empty_groups . restructure_X_to_order_slowN_fastT . return_robust_lambdaobject . robustpca . run_config . scaling_X . solveFG . tabulate_potential_C . update_g . 
Some associated R codes: 03_IFE_algorithm_functions.R . 07_IFE_robust_lambda.R . RCTS.R . dataset_X_dgp3.R . dataset_Y_dgp3.R . dataset_df_results_example.R . dataset_factor_group_true_dgp3.R . dataset_g_true_dgp3.R . dataset_lambda_group_true_dgp3.R . functions_cleaning.R . functions_parallel.R .  Full RCTS package functions and examples
Downloads during the last 30 days
03/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/14Downloads for RCTS02468101214161820222426TrendBars

Today's Hot Picks in Authors and Packages

apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA