Other packages > Find by keyword >

RCTS  

Clustering Time Series While Resisting Outliers
View on CRAN: Click here


Download and install RCTS package within the R console
Install from CRAN:
install.packages("RCTS")

Install from Github:
library("remotes")
install_github("cran/RCTS")

Install by package version:
library("remotes")
install_version("RCTS", "0.2.4")



Attach the package and use:
library("RCTS")
Maintained by
Ewoud Heyndels
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-06-20
Latest Update: 2023-05-18
Description:
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) . The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
How to cite:
Ewoud Heyndels (2022). RCTS: Clustering Time Series While Resisting Outliers. R package version 0.2.4, https://cran.r-project.org/web/packages/RCTS. Accessed 06 Nov. 2024.
Previous versions and publish date:
0.2.2 (2022-06-20 18:20), 0.2.3 (2022-09-14 09:40)
Other packages that cited RCTS R package
View RCTS citation profile
Other R packages that RCTS depends, imports, suggests or enhances
Complete documentation for RCTS
Functions, R codes and Examples using the RCTS R package
Some associated functions: LMROB . OF_vectorized3 . OF_vectorized_helpfunction3 . RCTS . X_dgp3 . Y_dgp3 . adapt_X_estimating_less_variables . adapt_pic_with_sigma2maxmodel . add_configuration . add_metrics . add_pic . add_pic_parallel . beta_true_heterogroups . calculate_FL_group_estimated . calculate_FL_group_true . calculate_PIC . calculate_PIC_term1 . calculate_TN_factor . calculate_VCsquared . calculate_W . calculate_XB_estimated . calculate_XB_true . calculate_Z_common . calculate_Z_group . calculate_best_config . calculate_error_term . calculate_errors_virtual_groups . calculate_lambda . calculate_lambda_group . calculate_lgfg . calculate_mse_beta . calculate_obj_for_g . calculate_sigma2 . calculate_sigma2maxmodel . calculate_virtual_factor_and_lambda_group . check_stopping_rules . clustering_with_robust_distances . create_covMat_crosssectional_dependence . create_data_dgp2 . create_true_beta . define_C_candidates . define_configurations . define_kg_candidates . define_number_subsets . define_object_for_initial_clustering_macropca . define_rho_parameters . determine_beta . determine_robust_lambda . df_results_example . do_we_estimate_common_factors . do_we_estimate_group_factors . estimate_algorithm . estimate_beta . estimate_factor . estimate_factor_group . evade_crashes_macropca . evade_floating_point_errors . factor_group_true_dgp3 . fill_rc . fill_rcj . final_estimations_filter_kg . g_true_dgp3 . generate_Y . generate_grouped_factorstructure . get_best_configuration . get_convergence_speed . get_final_estimation . grid_add_variables . handleNA . handleNA_LG . handle_macropca_errors . initialise_X . initialise_beta . initialise_clustering . initialise_commonfactorstructure_macropca . initialise_df_pic . initialise_df_results . initialise_rc . initialise_rcj . iterate . kg_candidates_expand . lambda_group_true_dgp3 . make_df_pic_parallel . make_df_results_parallel . make_subsamples . matrixnorm . mse_heterogeneous_groups . parallel_algorithm . plot_VCsquared . prepare_for_robpca . reassign_if_empty_groups . restructure_X_to_order_slowN_fastT . return_robust_lambdaobject . robustpca . run_config . scaling_X . solveFG . tabulate_potential_C . update_g . 
Some associated R codes: 03_IFE_algorithm_functions.R . 07_IFE_robust_lambda.R . RCTS.R . dataset_X_dgp3.R . dataset_Y_dgp3.R . dataset_df_results_example.R . dataset_factor_group_true_dgp3.R . dataset_g_true_dgp3.R . dataset_lambda_group_true_dgp3.R . functions_cleaning.R . functions_parallel.R .  Full RCTS package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

maic  
Matching-Adjusted Indirect Comparison
A generalised workflow for generation of subject weights to be used in Matching-Adjusted Indirect C ...
Download / Learn more Package Citations See dependency  
seriation  
Infrastructure for Ordering Objects Using Seriation
Infrastructure for ordering objects with an implementation of several seriation/sequencing/ordinati ...
Download / Learn more Package Citations See dependency  
ddp  
Desirable Dietary Pattern
The desirable Dietary Pattern (DDP)/ PPH score measures the variety of food consumption. The (weigh ...
Download / Learn more Package Citations See dependency  
equatiomatic  
Transform Models into 'LaTeX' Equations
The goal of equatiomatic is to reduce the painassociated with writing LaTeX formulas from fitted mod ...
Download / Learn more Package Citations See dependency  
mailR  
A Utility to Send Emails from R
Interface to Apache Commons Email to send emails from R. ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,092

R Packages

198,677

Dependencies

62,675

Author Associations

23,089

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA