Other packages > Find by keyword >

RCTS  

Clustering Time Series While Resisting Outliers
View on CRAN: Click here


Download and install RCTS package within the R console
Install from CRAN:
install.packages("RCTS")

Install from Github:
library("remotes")
install_github("cran/RCTS")

Install by package version:
library("remotes")
install_version("RCTS", "0.2.4")



Attach the package and use:
library("RCTS")
Maintained by
Ewoud Heyndels
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-06-20
Latest Update: 2023-05-18
Description:
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) . The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
How to cite:
Ewoud Heyndels (2022). RCTS: Clustering Time Series While Resisting Outliers. R package version 0.2.4, https://cran.r-project.org/web/packages/RCTS. Accessed 18 Feb. 2025.
Previous versions and publish date:
0.2.2 (2022-06-20 18:20), 0.2.3 (2022-09-14 09:40)
Other packages that cited RCTS R package
View RCTS citation profile
Other R packages that RCTS depends, imports, suggests or enhances
Complete documentation for RCTS
Functions, R codes and Examples using the RCTS R package
Some associated functions: LMROB . OF_vectorized3 . OF_vectorized_helpfunction3 . RCTS . X_dgp3 . Y_dgp3 . adapt_X_estimating_less_variables . adapt_pic_with_sigma2maxmodel . add_configuration . add_metrics . add_pic . add_pic_parallel . beta_true_heterogroups . calculate_FL_group_estimated . calculate_FL_group_true . calculate_PIC . calculate_PIC_term1 . calculate_TN_factor . calculate_VCsquared . calculate_W . calculate_XB_estimated . calculate_XB_true . calculate_Z_common . calculate_Z_group . calculate_best_config . calculate_error_term . calculate_errors_virtual_groups . calculate_lambda . calculate_lambda_group . calculate_lgfg . calculate_mse_beta . calculate_obj_for_g . calculate_sigma2 . calculate_sigma2maxmodel . calculate_virtual_factor_and_lambda_group . check_stopping_rules . clustering_with_robust_distances . create_covMat_crosssectional_dependence . create_data_dgp2 . create_true_beta . define_C_candidates . define_configurations . define_kg_candidates . define_number_subsets . define_object_for_initial_clustering_macropca . define_rho_parameters . determine_beta . determine_robust_lambda . df_results_example . do_we_estimate_common_factors . do_we_estimate_group_factors . estimate_algorithm . estimate_beta . estimate_factor . estimate_factor_group . evade_crashes_macropca . evade_floating_point_errors . factor_group_true_dgp3 . fill_rc . fill_rcj . final_estimations_filter_kg . g_true_dgp3 . generate_Y . generate_grouped_factorstructure . get_best_configuration . get_convergence_speed . get_final_estimation . grid_add_variables . handleNA . handleNA_LG . handle_macropca_errors . initialise_X . initialise_beta . initialise_clustering . initialise_commonfactorstructure_macropca . initialise_df_pic . initialise_df_results . initialise_rc . initialise_rcj . iterate . kg_candidates_expand . lambda_group_true_dgp3 . make_df_pic_parallel . make_df_results_parallel . make_subsamples . matrixnorm . mse_heterogeneous_groups . parallel_algorithm . plot_VCsquared . prepare_for_robpca . reassign_if_empty_groups . restructure_X_to_order_slowN_fastT . return_robust_lambdaobject . robustpca . run_config . scaling_X . solveFG . tabulate_potential_C . update_g . 
Some associated R codes: 03_IFE_algorithm_functions.R . 07_IFE_robust_lambda.R . RCTS.R . dataset_X_dgp3.R . dataset_Y_dgp3.R . dataset_df_results_example.R . dataset_factor_group_true_dgp3.R . dataset_g_true_dgp3.R . dataset_lambda_group_true_dgp3.R . functions_cleaning.R . functions_parallel.R .  Full RCTS package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
OptGS  
Near-Optimal Group-Sequential Designs for Continuous Outcomes
Optimal group-sequential designs minimise some function of the expected and maximum sample size whil ...
Download / Learn more Package Citations See dependency  
RobustBayesianCopas  
Robust Bayesian Copas Selection Model
Fits the robust Bayesian Copas (RBC) selection model of Bai et al. (2020) for cor ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA