Other packages > Find by keyword >

RCTS  

Clustering Time Series While Resisting Outliers
View on CRAN: Click here


Download and install RCTS package within the R console
Install from CRAN:
install.packages("RCTS")

Install from Github:
library("remotes")
install_github("cran/RCTS")

Install by package version:
library("remotes")
install_version("RCTS", "0.2.4")



Attach the package and use:
library("RCTS")
Maintained by
Ewoud Heyndels
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2022-06-20
Latest Update: 2023-05-18
Description:
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) . The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
How to cite:
Ewoud Heyndels (2022). RCTS: Clustering Time Series While Resisting Outliers. R package version 0.2.4, https://cran.r-project.org/web/packages/RCTS. Accessed 21 Dec. 2024.
Previous versions and publish date:
0.2.2 (2022-06-20 18:20), 0.2.3 (2022-09-14 09:40)
Other packages that cited RCTS R package
View RCTS citation profile
Other R packages that RCTS depends, imports, suggests or enhances
Complete documentation for RCTS
Functions, R codes and Examples using the RCTS R package
Some associated functions: LMROB . OF_vectorized3 . OF_vectorized_helpfunction3 . RCTS . X_dgp3 . Y_dgp3 . adapt_X_estimating_less_variables . adapt_pic_with_sigma2maxmodel . add_configuration . add_metrics . add_pic . add_pic_parallel . beta_true_heterogroups . calculate_FL_group_estimated . calculate_FL_group_true . calculate_PIC . calculate_PIC_term1 . calculate_TN_factor . calculate_VCsquared . calculate_W . calculate_XB_estimated . calculate_XB_true . calculate_Z_common . calculate_Z_group . calculate_best_config . calculate_error_term . calculate_errors_virtual_groups . calculate_lambda . calculate_lambda_group . calculate_lgfg . calculate_mse_beta . calculate_obj_for_g . calculate_sigma2 . calculate_sigma2maxmodel . calculate_virtual_factor_and_lambda_group . check_stopping_rules . clustering_with_robust_distances . create_covMat_crosssectional_dependence . create_data_dgp2 . create_true_beta . define_C_candidates . define_configurations . define_kg_candidates . define_number_subsets . define_object_for_initial_clustering_macropca . define_rho_parameters . determine_beta . determine_robust_lambda . df_results_example . do_we_estimate_common_factors . do_we_estimate_group_factors . estimate_algorithm . estimate_beta . estimate_factor . estimate_factor_group . evade_crashes_macropca . evade_floating_point_errors . factor_group_true_dgp3 . fill_rc . fill_rcj . final_estimations_filter_kg . g_true_dgp3 . generate_Y . generate_grouped_factorstructure . get_best_configuration . get_convergence_speed . get_final_estimation . grid_add_variables . handleNA . handleNA_LG . handle_macropca_errors . initialise_X . initialise_beta . initialise_clustering . initialise_commonfactorstructure_macropca . initialise_df_pic . initialise_df_results . initialise_rc . initialise_rcj . iterate . kg_candidates_expand . lambda_group_true_dgp3 . make_df_pic_parallel . make_df_results_parallel . make_subsamples . matrixnorm . mse_heterogeneous_groups . parallel_algorithm . plot_VCsquared . prepare_for_robpca . reassign_if_empty_groups . restructure_X_to_order_slowN_fastT . return_robust_lambdaobject . robustpca . run_config . scaling_X . solveFG . tabulate_potential_C . update_g . 
Some associated R codes: 03_IFE_algorithm_functions.R . 07_IFE_robust_lambda.R . RCTS.R . dataset_X_dgp3.R . dataset_Y_dgp3.R . dataset_df_results_example.R . dataset_factor_group_true_dgp3.R . dataset_g_true_dgp3.R . dataset_lambda_group_true_dgp3.R . functions_cleaning.R . functions_parallel.R .  Full RCTS package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

CIFsmry  
Weighted summary of cumulative incidence functions
Estimate of cumulative incidence function in two samples. Provide weighted summary statistics based ...
Download / Learn more Package Citations See dependency  
helda  
Preprocess Data and Get Better Insights from Machine Learning Models
The main focus is on preprocessing and data visualization of machine learning models performances.So ...
Download / Learn more Package Citations See dependency  
condGEE  
Parameter Estimation in Conditional GEE for Recurrent Event Gap Times
Solves for the mean parameters, the variance parameter, and their asymptotic variance in a condition ...
Download / Learn more Package Citations See dependency  
batteryreduction  
An R Package for Data Reduction by Battery Reduction
Battery reduction is a method used in data reduction. It uses Gram-Schmidt orthogonal rotations to f ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
SEIRfansy  
Extended Susceptible-Exposed-Infected-Recovery Model
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symp ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA