Other packages > Find by keyword >

RCTS  

Clustering Time Series While Resisting Outliers
View on CRAN: Click here


Download and install RCTS package within the R console
Install from CRAN:
install.packages("RCTS")

Install from Github:
library("remotes")
install_github("cran/RCTS")

Install by package version:
library("remotes")
install_version("RCTS", "0.2.4")



Attach the package and use:
library("RCTS")
Maintained by
Ewoud Heyndels
[Scholar Profile | Author Map]
First Published: 2022-06-20
Latest Update: 2023-05-18
Description:
Robust Clustering of Time Series (RCTS) has the functionality to cluster time series using both the classical and the robust interactive fixed effects framework. The classical framework is developed in Ando & Bai (2017) . The implementation within this package excludes the SCAD-penalty on the estimations of beta. This robust framework is developed in Boudt & Heyndels (2022) and is made robust against different kinds of outliers. The algorithm iteratively updates beta (the coefficients of the observable variables), group membership, and the latent factors (which can be common and/or group-specific) along with their loadings. The number of groups and factors can be estimated if they are unknown.
How to cite:
Ewoud Heyndels (2022). RCTS: Clustering Time Series While Resisting Outliers. R package version 0.2.4, https://cran.r-project.org/web/packages/RCTS. Accessed 26 Mar. 2025.
Previous versions and publish date:
0.2.2 (2022-06-20 18:20), 0.2.3 (2022-09-14 09:40)
Other packages that cited RCTS R package
View RCTS citation profile
Other R packages that RCTS depends, imports, suggests or enhances
Complete documentation for RCTS
Functions, R codes and Examples using the RCTS R package
Some associated functions: LMROB . OF_vectorized3 . OF_vectorized_helpfunction3 . RCTS . X_dgp3 . Y_dgp3 . adapt_X_estimating_less_variables . adapt_pic_with_sigma2maxmodel . add_configuration . add_metrics . add_pic . add_pic_parallel . beta_true_heterogroups . calculate_FL_group_estimated . calculate_FL_group_true . calculate_PIC . calculate_PIC_term1 . calculate_TN_factor . calculate_VCsquared . calculate_W . calculate_XB_estimated . calculate_XB_true . calculate_Z_common . calculate_Z_group . calculate_best_config . calculate_error_term . calculate_errors_virtual_groups . calculate_lambda . calculate_lambda_group . calculate_lgfg . calculate_mse_beta . calculate_obj_for_g . calculate_sigma2 . calculate_sigma2maxmodel . calculate_virtual_factor_and_lambda_group . check_stopping_rules . clustering_with_robust_distances . create_covMat_crosssectional_dependence . create_data_dgp2 . create_true_beta . define_C_candidates . define_configurations . define_kg_candidates . define_number_subsets . define_object_for_initial_clustering_macropca . define_rho_parameters . determine_beta . determine_robust_lambda . df_results_example . do_we_estimate_common_factors . do_we_estimate_group_factors . estimate_algorithm . estimate_beta . estimate_factor . estimate_factor_group . evade_crashes_macropca . evade_floating_point_errors . factor_group_true_dgp3 . fill_rc . fill_rcj . final_estimations_filter_kg . g_true_dgp3 . generate_Y . generate_grouped_factorstructure . get_best_configuration . get_convergence_speed . get_final_estimation . grid_add_variables . handleNA . handleNA_LG . handle_macropca_errors . initialise_X . initialise_beta . initialise_clustering . initialise_commonfactorstructure_macropca . initialise_df_pic . initialise_df_results . initialise_rc . initialise_rcj . iterate . kg_candidates_expand . lambda_group_true_dgp3 . make_df_pic_parallel . make_df_results_parallel . make_subsamples . matrixnorm . mse_heterogeneous_groups . parallel_algorithm . plot_VCsquared . prepare_for_robpca . reassign_if_empty_groups . restructure_X_to_order_slowN_fastT . return_robust_lambdaobject . robustpca . run_config . scaling_X . solveFG . tabulate_potential_C . update_g . 
Some associated R codes: 03_IFE_algorithm_functions.R . 07_IFE_robust_lambda.R . RCTS.R . dataset_X_dgp3.R . dataset_Y_dgp3.R . dataset_df_results_example.R . dataset_factor_group_true_dgp3.R . dataset_g_true_dgp3.R . dataset_lambda_group_true_dgp3.R . functions_cleaning.R . functions_parallel.R .  Full RCTS package functions and examples
Downloads during the last 30 days
02/2402/2502/2602/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1803/1903/2003/2103/2203/2303/2403/25Downloads for RCTS02468101214161820TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
photobiologyPlants  
Plant Photobiology Related Functions and Data
Provides functions for quantifying visible (VIS) and ultraviolet (UV) radiation in relation to the ...
Download / Learn more Package Citations See dependency  
DySS  
Dynamic Screening Systems
In practice, we will encounter problems where the longitudinal performance of processes needs to be ...
Download / Learn more Package Citations See dependency  
Maintainer: Lu You (view profile)
provenance  
Statistical Toolbox for Sedimentary Provenance Analysis
Bundles a number of established statistical methods to facilitate the visual interpretation of large ...
Download / Learn more Package Citations See dependency  
fPortfolio  
Rmetrics - Portfolio Selection and Optimization
A collection of functions to optimize portfolios and to analyze them from different points of view. ...
Download / Learn more Package Citations See dependency  
sAIC  
Akaike Information Criterion for Sparse Estimation
Computes the Akaike information criterion for the generalized linear models (logistic regression, Po ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA