Other packages > Find by keyword >

RALSA  

R Analyzer for Large-Scale Assessments
View on CRAN: Click here


Download and install RALSA package within the R console
Install from CRAN:
install.packages("RALSA")

Install from Github:
library("remotes")
install_github("cran/RALSA")

Install by package version:
library("remotes")
install_version("RALSA", "1.5.5")



Attach the package and use:
library("RALSA")
Maintained by
Plamen V. Mirazchiyski
[Scholar Profile | Author Map]
First Published: 2020-11-10
Latest Update: 2023-06-23
Description:
Prepare and analyze data from large-scale assessments and surveys with complex sampling and assessment design (see 'Rutkowski', 2010 ). Such studies are, for example, international assessments like 'TIMSS', 'PIRLS' and 'PISA'. A graphical interface is available for the non-technical user.The package includes functions to covert the original data from 'SPSS' into 'R' data sets keeping the user-defined missing values, merge data from different respondents and/or countries, generate variable dictionaries, modify data, produce descriptive statistics (percentages, means, percentiles, benchmarks) and multivariate statistics (correlations, linear regression, binary logistic regression). The number of supported studies and analysis types will increase in future. For a general presentation of the package, see 'Mirazchiyski', 2021a (). For detailed technical aspects of the package, see 'Mirazchiyski', 2021b ().
How to cite:
Plamen V. Mirazchiyski (2020). RALSA: R Analyzer for Large-Scale Assessments. R package version 1.5.5, https://cran.r-project.org/web/packages/RALSA. Accessed 16 Apr. 2025.
Previous versions and publish date:
0.90.1 (2020-11-10 10:50), 0.90.2 (2021-02-02 18:10), 0.90.3 (2021-03-15 14:20), 1.0.0 (2021-04-28 18:10), 1.0.1 (2021-05-28 15:10), 1.0.2 (2021-10-21 17:20), 1.1.0 (2022-02-04 14:10), 1.1.5 (2022-03-30 14:50), 1.2.0 (2022-05-04 16:00), 1.3.0 (2022-07-08 14:00), 1.3.5 (2023-06-23 17:40), 1.3.7 (2023-10-26 17:50), 1.4.0 (2024-02-02 15:30), 1.4.5 (2024-04-26 14:40), 1.4.7 (2024-07-25 14:00), 1.5.0 (2024-09-23 12:30)
Other packages that cited RALSA R package
View RALSA citation profile
Other R packages that RALSA depends, imports, suggests or enhances
Complete documentation for RALSA
Functions, R codes and Examples using the RALSA R package
Some associated functions: RALSA . lsa.bench . lsa.bin.log.reg . lsa.convert.data . lsa.corr . lsa.crosstabs . lsa.data.diag . lsa.lin.reg . lsa.merge.data . lsa.pcts.means . lsa.prctls . lsa.recode.vars . lsa.vars.dict . ralsaGUI . 
Some associated R codes: Full RALSA package functions and examples
Downloads during the last 30 days
03/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/14Downloads for RALSA010203040506070TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  
datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA