Other packages > Find by keyword >

OPDOE  

Optimal Design of Experiments
View on CRAN: Click here


Download and install OPDOE package within the R console
Install from CRAN:
install.packages("OPDOE")

Install from Github:
library("remotes")
install_github("cran/OPDOE")

Install by package version:
library("remotes")
install_version("OPDOE", "1.0-10")



Attach the package and use:
library("OPDOE")
Maintained by
Albrecht Gebhardt
[Scholar Profile | Author Map]
First Published: 2013-05-22
Latest Update: 2018-03-17
Description:
Several function related to Experimental Design are implemented here, see "Optimal Experimental Design with R" by Rasch D. et. al (ISBN 9781439816974).
How to cite:
Albrecht Gebhardt (2013). OPDOE: Optimal Design of Experiments. R package version 1.0-10, https://cran.r-project.org/web/packages/OPDOE. Accessed 29 Mar. 2025.
Previous versions and publish date:
1.0-6 (2013-05-22 07:53), 1.0-7 (2013-05-30 07:26), 1.0-8 (2014-01-14 19:38), 1.0-9 (2014-01-15 23:56)
Other packages that cited OPDOE R package
View OPDOE citation profile
Other R packages that OPDOE depends, imports, suggests or enhances
Complete documentation for OPDOE
Functions, R codes and Examples using the OPDOE R package
Some associated functions: OPDOE-undocumented . cattle . design.reg.polynom . design.regression . had . heights . hemp . print.design.regression . print.triangular.test . size.anova . size_a.three_way . size_b.three_way . size_b.two_way . size_bc.three_way . size_c.three_way . size_n.one_way . size_n.three_way . size_n.two_way . triangular.test.norm . triangular.test . triangular.test.prop . update.triangular.test . 
Some associated R codes: add_size.mean.two_stage.R . anova.R . beta.R . bibd.R . conf.matrix.R . confint.mean.two_stage.R . conversion.R . defining_relation.fractional_factorial.two_levels.R . design.reg.polynom.R . hadamard.R . hadamard.table.R . myGF.R . myfactor.comb.R . myredu.modp.R . ncp.R . seqadd.confint.R . seqadd.normal.R . size.comparing.variances.R . size.comparing_probs.mcnemar.R . size.multiple_t.test.R . size.prop.confint.R . size.prop.test.R . size.prop_test.two_sample.R . size.selection.bechhofer.R . size.seq_select.mean.R . size.t.test.R . size.variance.confint.R . size_a.three_way_mixed_cxbina.model_3_c.R . size_a.three_way_mixed_cxbina.model_7_c.R . size_ab.three_way_mixed_cxbina.model_7_c.R . size_b.three_way_mixed_ab_in_c.model_3_a.R . size_b.three_way_mixed_cxbina.model_4_a.R . size_b.three_way_mixed_cxbina.model_4_axc.R . size_b.three_way_mixed_cxbina.model_4_c.R . size_b.three_way_mixed_cxbina.model_7_c.R . size_b.three_way_nested.model_6_a.R . size_b.two_way_cross.mixed_model_a_fixed_a.R . size_b.two_way_nested.b_random_a_fixed_a.R . size_bc.three_way_cross.model_4_a_case1.R . size_bc.three_way_cross.model_4_a_case2.R . size_bc.three_way_mixed_cxbina.model_6_a_case1.R . size_bc.three_way_mixed_cxbina.model_6_a_case2.R . size_c.three_way_cross.model_3_a.R . size_c.three_way_cross.model_3_axb.R . size_c.three_way_mixed_ab_in_c.model_5_a.R . size_c.three_way_mixed_ab_in_c.model_5_axb.R . size_c.three_way_mixed_ab_in_c.model_5_b.R . size_c.three_way_mixed_ab_in_c.model_6_b.R . size_c.three_way_mixed_cxbina.model_5_a.R . size_c.three_way_mixed_cxbina.model_5_b.R . size_c.three_way_mixed_cxbina.model_7_b.R . size_c.three_way_nested.model_5_a.R . size_c.three_way_nested.model_5_b.R . size_c.three_way_nested.model_7_b.R . size_n.one_way.model_1.R . size_n.regII.ci_b1.R . size_n.regII.ci_exp.R . size_n.regII.ci_rho.R . size_n.regII.test_rho.R . size_n.regII.test_rho2.R . size_n.three_way_cross.model_1_a.R . size_n.three_way_cross.model_1_axb.R . size_n.three_way_cross.model_1_axbxc.R . size_n.three_way_mixed_ab_in_c.model_1_a.R . size_n.three_way_mixed_ab_in_c.model_1_axb.R . size_n.three_way_mixed_ab_in_c.model_1_b.R . size_n.three_way_mixed_ab_in_c.model_1_c.R . size_n.three_way_mixed_ab_in_c.model_3_c.R . size_n.three_way_mixed_ab_in_c.model_4_c.R . size_n.three_way_mixed_cxbina.model_1_a.R . size_n.three_way_mixed_cxbina.model_1_axc.R . size_n.three_way_mixed_cxbina.model_1_b.R . size_n.three_way_mixed_cxbina.model_1_bxc.R . size_n.three_way_mixed_cxbina.model_1_c.R . size_n.three_way_mixed_cxbina.model_3_b.R . size_n.three_way_mixed_cxbina.model_3_bxc.R . size_n.three_way_nested.model_1_a.R . size_n.three_way_nested.model_1_b.R . size_n.three_way_nested.model_1_c.R . size_n.three_way_nested.model_3_b.R . size_n.three_way_nested.model_3_c.R . size_n.three_way_nested.model_4_a.R . size_n.three_way_nested.model_4_c.R . size_n.three_way_nested.model_8_c.R . size_n.two_way_cross.model_1_a.R . size_n.two_way_cross.model_1_axb.R . size_n.two_way_nested.a_random_b_fixed_b.R . size_n.two_way_nested.model_1_test_factor_a.R . size_n.two_way_nested.model_1_test_factor_b.R . sizes.confint.welch.R . triangular.test.R .  Full OPDOE package functions and examples
Downloads during the last 30 days
02/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/28Downloads for OPDOE2468101214161820TrendBars

Today's Hot Picks in Authors and Packages

landmix  
Landmark Prediction for Mixture Data
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a l ...
Download / Learn more Package Citations See dependency  
gglgbtq  
Show Pride on 'ggplot2' Plots
Provides multiple palettes based on pride flags with tailored themes. ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA