Other packages > Find by keyword >

NNS  

Nonlinear Nonparametric Statistics
View on CRAN: Click here


Download and install NNS package within the R console
Install from CRAN:
install.packages("NNS")

Install from Github:
library("remotes")
install_github("cran/NNS")

Install by package version:
library("remotes")
install_version("NNS", "11.1")



Attach the package and use:
library("NNS")
Maintained by
Fred Viole
[Scholar Profile | Author Map]
First Published: 2016-04-05
Latest Update: 2024-03-07
Description:
Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences. NNS offers: Numerical integration, Numerical differentiation, Clustering, Correlation, Dependence, Causal analysis, ANOVA, Regression, Classification, Seasonality, Autoregressive modeling, Normalization, Stochastic dominance and Advanced Monte Carlo sampling. All routines based on: Viole, F. and Nawrocki, D. (2013), Nonlinear Nonparametric Statistics: Using Partial Moments (ISBN: 1490523995).
How to cite:
Fred Viole (2016). NNS: Nonlinear Nonparametric Statistics. R package version 11.1, https://cran.r-project.org/web/packages/NNS. Accessed 13 Apr. 2025.
Previous versions and publish date:
0.1.1 (2016-04-06 15:56), 0.1.3 (2016-04-21 22:12), 0.1.6 (2016-05-11 06:18), 0.1.9.2 (2016-06-14 20:34), 0.1.9.4 (2016-07-30 09:30), 0.1.9 (2016-05-29 16:48), 0.1 (2016-04-05 08:14), 0.2.0 (2016-08-18 10:02), 0.2.1 (2016-09-13 21:19), 0.2.2 (2016-09-29 08:02), 0.2.3 (2016-10-21 18:41), 0.2.4 (2016-11-28 08:21), 0.2.5 (2017-01-11 00:39), 0.2.6 (2017-02-12 08:31), 0.3.0.1 (2017-03-11 18:56), 0.3.0 (2017-03-10 00:43), 0.3.1 (2017-03-31 18:24), 0.3.2 (2017-05-01 12:19), 0.3.3 (2017-06-03 00:22), 0.3.4 (2017-06-27 17:50), 0.3.5 (2017-07-23 18:24), 0.3.6 (2017-08-15 23:39), 0.3.7 (2017-09-30 20:47), 0.3.8.1 (2017-12-08 17:07), 0.3.8.2 (2018-01-08 20:57), 0.3.8.3 (2018-02-16 20:06), 0.3.8.4 (2018-03-17 07:21), 0.3.8.6 (2018-04-16 13:11), 0.3.8.7 (2018-05-15 18:46), 0.3.8.8 (2019-03-04 14:20), 0.3.8 (2017-11-13 06:29), 0.3.9 (2019-04-15 16:22), 0.4.0 (2019-05-14 20:30), 0.4.1 (2019-06-10 23:40), 0.4.2 (2019-06-11 18:20), 0.4.3 (2019-07-19 18:40), 0.4.4 (2019-08-08 17:50), 0.4.5 (2019-09-09 18:40), 0.4.6 (2019-10-07 17:40), 0.4.7.1 (2019-11-21 01:00), 0.4.7 (2019-11-19 19:20), 0.4.8 (2020-01-08 11:00), 0.4.9 (2020-02-13 18:00), 0.5.0 (2020-03-17 15:40), 0.5.1 (2020-04-15 20:20), 0.5.2.1 (2020-05-19 16:00), 0.5.2 (2020-05-17 17:50), 0.5.3 (2020-06-20 00:50), 0.5.4.1 (2020-07-01 14:00), 0.5.4.2 (2020-07-01 15:10), 0.5.4.3 (2020-08-01 02:20), 0.5.4 (2020-06-29 18:30), 0.5.5 (2020-09-02 08:50), 0.5.6 (2020-12-03 19:50), 0.5.7 (2021-01-05 15:20), 0.6.1 (2021-03-15 02:50), 0.6.2 (2021-03-15 13:50), 0.6.3.1 (2021-04-20 23:30), 0.6.3.2 (2021-04-21 11:30), 0.6 (2021-02-04 06:50), 0.7.0.1 (2021-05-27 02:20), 0.7.0 (2021-05-25 18:00), 0.7.1 (2021-06-26 01:20), 0.7.2 (2021-08-06 23:40), 0.8.0 (2021-09-13 17:30), 0.8.1 (2021-09-20 20:30), 0.8.2 (2021-09-27 16:00), 0.8.3 (2021-11-23 17:30), 0.8.4.1 (2022-01-13 11:12), 0.8.4 (2022-01-12 14:52), 0.8.5 (2022-03-08 17:30), 0.8.61 (2022-04-05 00:50), 0.8.70 (2022-04-24 16:30), 0.9.0 (2022-08-06 09:30), 0.9.1 (2022-08-22 09:50), 0.9.2.1 (2022-09-29 13:10), 0.9.2 (2022-09-23 22:00), 0.9.3 (2022-11-03 23:20), 0.9.4 (2022-12-01 20:30), 0.9.5 (2023-01-08 01:20), 0.9.6.1 (2023-03-08 17:40), 0.9.6 (2023-03-08 09:50), 0.9.7 (2023-04-11 22:50), 0.9.8 (2023-05-17 08:30), 0.9.9.1 (2023-06-15 06:30), 0.9.9 (2023-05-19 11:50), 10.0 (2023-07-15 23:30), 10.1 (2023-08-26 15:50), 10.2 (2023-10-03 15:00), 10.3 (2023-11-10 11:00), 10.4 (2023-11-27 20:20), 10.5 (2024-01-10 11:23), 10.6 (2024-02-20 09:10), 10.7 (2024-03-07 01:10), 10.8.1 (2024-05-11 19:33), 10.8.2 (2024-05-12 10:03), 10.8 (2024-04-19 09:02), 10.9.1 (2024-08-23 17:20), 10.9.2 (2024-09-06 16:30), 10.9.3 (2024-10-14 17:40), 10.9.4 (2024-12-02 19:10), 10.9.5 (2024-12-16 18:50), 10.9.6 (2024-12-17 18:40), 10.9 (2024-08-19 08:50), 11.0 (2025-01-10 19:30), 11.1 (2025-02-17 21:00)
Other packages that cited NNS R package
View NNS citation profile
Other R packages that NNS depends, imports, suggests or enhances
Complete documentation for NNS
Downloads during the last 30 days
03/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/12Downloads for NNS050100150200250300TrendBars

Today's Hot Picks in Authors and Packages

LDABiplots  
Biplot Graphical Interface for LDA Models
Contains the development of a tool that provides a web-based graphical user interface (GUI) to perf ...
Download / Learn more Package Citations See dependency  
ggprism  
A 'ggplot2' Extension Inspired by 'GraphPad Prism'
Provides various themes, palettes, and other functions that are used to customise ggplots to look l ...
Download / Learn more Package Citations See dependency  
SPOTMisc  
Misc Extensions for the "SPOT" Package
Implements additional models, simulation tools, and interfaces as extensions to 'SPOT'. It provides ...
Download / Learn more Package Citations See dependency  
optimParallel  
Parallel Version of the L-BFGS-B Optimization Method
Provides a parallel version of the L-BFGS-B method of optim(). The main function of the package is o ...
Download / Learn more Package Citations See dependency  
MLeval  
Machine Learning Model Evaluation
Straightforward and detailed evaluation of machine learning models. 'MLeval' can produce receiver op ...
Download / Learn more Package Citations See dependency  
COMPoissonReg  
Conway-Maxwell Poisson (COM-Poisson) Regression
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA