Other packages > Find by keyword >

MTS  

All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
View on CRAN: Click here


Download and install MTS package within the R console
Install from CRAN:
install.packages("MTS")

Install from Github:
library("remotes")
install_github("cran/MTS")

Install by package version:
library("remotes")
install_version("MTS", "1.2.1")



Attach the package and use:
library("MTS")
Maintained by
Ruey S. Tsay
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-03-01
Latest Update: 2022-04-11
Description:
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
How to cite:
Ruey S. Tsay (2014). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models. R package version 1.2.1, https://cran.r-project.org/web/packages/MTS. Accessed 18 Feb. 2025.
Previous versions and publish date:
0.32 (2014-03-01 20:16), 0.33 (2015-02-12 17:29), 1.0.3 (2021-06-04 17:20), 1.0 (2018-10-10 16:50), 1.1.1 (2022-03-02 21:50)
Other packages that cited MTS R package
View MTS citation profile
Other R packages that MTS depends, imports, suggests or enhances
Complete documentation for MTS
Functions, R codes and Examples using the MTS R package
Some associated functions: BEKK11 . BVAR . Btfm2 . Corner . ECMvar . ECMvar1 . EWMAvol . Eccm . FEVdec . GrangerTest . Kronfit . Kronid . Kronpred . Kronspec . MCHdiag . MCholV . MTS-internal . MTS-package . MTSdiag . MTSplot . MarchTest . Mlm . Mtxprod . Mtxprod1 . PIwgt . PSIwgt . REGts . REGtspred . RLS . SCCor . SCMfit . SCMid . SCMid2 . SCMmod . SWfore . VAR . VARMA . VARMACpp . VARMAcov . VARMAirf . VARMApred . VARMAsim . VARX . VARXirf . VARXorder . VARXpred . VARorder . VARorderI . VARpred . VARpsi . VARs . VMA . VMACpp . VMAe . VMAorder . VMAs . Vech . VechM . Vmiss . Vpmiss . apca . archTest . backtest . ccm . comVol . dccFit . dccPre . diffM . hfactor . ibmspko . mq . msqrt . mtCopula . qgdp . refECMvar . refECMvar1 . refKronfit . refREGts . refSCMfit . refVAR . refVARMA . refVARX . refVMA . refVMAe . refsVARMA . sVARMA . sVARMACpp . sVARMApred . tenstocks . tfm . tfm1 . tfm2 . 
Some associated R codes: LLKvarma.R . MTS.R . MVM.R . RcppExports.R . VARMACpp.R . VMACpp.R . sVARMACpp.R .  Full MTS package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
OptGS  
Near-Optimal Group-Sequential Designs for Continuous Outcomes
Optimal group-sequential designs minimise some function of the expected and maximum sample size whil ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA