Other packages > Find by keyword >

MTS  

All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
View on CRAN: Click here


Download and install MTS package within the R console
Install from CRAN:
install.packages("MTS")

Install from Github:
library("remotes")
install_github("cran/MTS")

Install by package version:
library("remotes")
install_version("MTS", "1.2.1")



Attach the package and use:
library("MTS")
Maintained by
Ruey S. Tsay
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2014-03-01
Latest Update: 2022-04-11
Description:
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
How to cite:
Ruey S. Tsay (2014). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models. R package version 1.2.1, https://cran.r-project.org/web/packages/MTS. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.32 (2014-03-01 20:16), 0.33 (2015-02-12 17:29), 1.0.3 (2021-06-04 17:20), 1.0 (2018-10-10 16:50), 1.1.1 (2022-03-02 21:50)
Other packages that cited MTS R package
View MTS citation profile
Other R packages that MTS depends, imports, suggests or enhances
Complete documentation for MTS
Functions, R codes and Examples using the MTS R package
Some associated functions: BEKK11 . BVAR . Btfm2 . Corner . ECMvar . ECMvar1 . EWMAvol . Eccm . FEVdec . GrangerTest . Kronfit . Kronid . Kronpred . Kronspec . MCHdiag . MCholV . MTS-internal . MTS-package . MTSdiag . MTSplot . MarchTest . Mlm . Mtxprod . Mtxprod1 . PIwgt . PSIwgt . REGts . REGtspred . RLS . SCCor . SCMfit . SCMid . SCMid2 . SCMmod . SWfore . VAR . VARMA . VARMACpp . VARMAcov . VARMAirf . VARMApred . VARMAsim . VARX . VARXirf . VARXorder . VARXpred . VARorder . VARorderI . VARpred . VARpsi . VARs . VMA . VMACpp . VMAe . VMAorder . VMAs . Vech . VechM . Vmiss . Vpmiss . apca . archTest . backtest . ccm . comVol . dccFit . dccPre . diffM . hfactor . ibmspko . mq . msqrt . mtCopula . qgdp . refECMvar . refECMvar1 . refKronfit . refREGts . refSCMfit . refVAR . refVARMA . refVARX . refVMA . refVMAe . refsVARMA . sVARMA . sVARMACpp . sVARMApred . tenstocks . tfm . tfm1 . tfm2 . 
Some associated R codes: LLKvarma.R . MTS.R . MVM.R . RcppExports.R . VARMACpp.R . VMACpp.R . sVARMACpp.R .  Full MTS package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA