Other packages > Find by keyword >

MTS  

All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models
View on CRAN: Click here


Download and install MTS package within the R console
Install from CRAN:
install.packages("MTS")

Install from Github:
library("remotes")
install_github("cran/MTS")

Install by package version:
library("remotes")
install_version("MTS", "1.2.1")



Attach the package and use:
library("MTS")
Maintained by
Ruey S. Tsay
[Scholar Profile | Author Map]
First Published: 2014-03-01
Latest Update: 2022-04-11
Description:
Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model.
How to cite:
Ruey S. Tsay (2014). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series (MTS) and Estimating Multivariate Volatility Models. R package version 1.2.1, https://cran.r-project.org/web/packages/MTS. Accessed 06 Apr. 2025.
Previous versions and publish date:
0.32 (2014-03-01 20:16), 0.33 (2015-02-12 17:29), 1.0.3 (2021-06-04 17:20), 1.0 (2018-10-10 16:50), 1.1.1 (2022-03-02 21:50)
Other packages that cited MTS R package
View MTS citation profile
Other R packages that MTS depends, imports, suggests or enhances
Complete documentation for MTS
Functions, R codes and Examples using the MTS R package
Some associated functions: BEKK11 . BVAR . Btfm2 . Corner . ECMvar . ECMvar1 . EWMAvol . Eccm . FEVdec . GrangerTest . Kronfit . Kronid . Kronpred . Kronspec . MCHdiag . MCholV . MTS-internal . MTS-package . MTSdiag . MTSplot . MarchTest . Mlm . Mtxprod . Mtxprod1 . PIwgt . PSIwgt . REGts . REGtspred . RLS . SCCor . SCMfit . SCMid . SCMid2 . SCMmod . SWfore . VAR . VARMA . VARMACpp . VARMAcov . VARMAirf . VARMApred . VARMAsim . VARX . VARXirf . VARXorder . VARXpred . VARorder . VARorderI . VARpred . VARpsi . VARs . VMA . VMACpp . VMAe . VMAorder . VMAs . Vech . VechM . Vmiss . Vpmiss . apca . archTest . backtest . ccm . comVol . dccFit . dccPre . diffM . hfactor . ibmspko . mq . msqrt . mtCopula . qgdp . refECMvar . refECMvar1 . refKronfit . refREGts . refSCMfit . refVAR . refVARMA . refVARX . refVMA . refVMAe . refsVARMA . sVARMA . sVARMACpp . sVARMApred . tenstocks . tfm . tfm1 . tfm2 . 
Some associated R codes: LLKvarma.R . MTS.R . MVM.R . RcppExports.R . VARMACpp.R . VMACpp.R . sVARMACpp.R .  Full MTS package functions and examples
Downloads during the last 30 days
03/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/05Downloads for MTS406080100120140160180TrendBars

Today's Hot Picks in Authors and Packages

listarrays  
A Toolbox for Working with R Arrays in a Functional Programming Style
A toolbox for R arrays. Flexibly split, bind, reshape, modify, subset and name arrays. ...
Download / Learn more Package Citations See dependency  
ider  
Various Methods for Estimating Intrinsic Dimension
An implementation of various methods for estimating intrinsic dimension of vector-valued dataset or ...
Download / Learn more Package Citations See dependency  
FuzzyQ  
Fuzzy Quantification of Common and Rare Species
Fuzzy clustering of species in an ecological community as common or rare based on their abundance a ...
Download / Learn more Package Citations See dependency  
r2resize  
In-Text Resize for Images, Tables and Fancy Resize Containers in 'shiny', 'rmarkdown' and 'quarto' Documents
Automatic resizing toolbar for containers, images and tables. Various resizable or expandable contai ...
Download / Learn more Package Citations See dependency  
danstat  
R Client for the Statistics Denmark Databank API
The purpose of the package is to enable an R function interface into the Statistics Denmark Databank ...
Download / Learn more Package Citations See dependency  
spCP  
Spatially Varying Change Points
Implements a spatially varying change point model with unique intercepts, slopes, variance intercep ...
Download / Learn more Package Citations See dependency  

23,990

R Packages

207,311

Dependencies

64,809

Author Associations

23,991

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA