Other packages > Find by keyword >

MCMCpack  

Markov Chain Monte Carlo (MCMC) Package
View on CRAN: Click here


Download and install MCMCpack package within the R console
Install from CRAN:
install.packages("MCMCpack")

Install from Github:
library("remotes")
install_github("cran/MCMCpack")

Install by package version:
library("remotes")
install_version("MCMCpack", "1.7-1")



Attach the package and use:
library("MCMCpack")
Maintained by
Jong Hee Park
[Scholar Profile | Author Map]
First Published: 2003-02-21
Latest Update: 2022-04-13
Description:
Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
How to cite:
Jong Hee Park (2003). MCMCpack: Markov Chain Monte Carlo (MCMC) Package. R package version 1.7-1, https://cran.r-project.org/web/packages/MCMCpack. Accessed 16 Apr. 2025.
Previous versions and publish date:
0.3-10 (2003-02-21 18:07), 0.3-11 (2003-03-20 21:30), 0.4-1 (2003-06-11 21:18), 0.4-2 (2003-07-24 10:09), 0.4-3 (2003-09-12 22:24), 0.4-4 (2003-11-15 22:29), 0.4-5 (2003-11-18 20:16), 0.4-6 (2003-11-24 00:49), 0.4-7 (2004-02-05 09:20), 0.4-8 (2004-02-17 00:32), 0.4-9 (2004-07-04 16:23), 0.5-1 (2004-08-05 10:47), 0.5-2 (2004-12-27 13:49), 0.6-1 (2005-02-21 09:20), 0.6-2 (2005-03-09 21:40), 0.6-3 (2005-03-15 13:22), 0.6-4 (2005-03-17 17:11), 0.6-5 (2005-06-30 08:35), 0.6-6 (2005-11-15 09:26), 0.7-1 (2006-01-28 22:26), 0.7-2 (2006-05-30 09:58), 0.7-3 (2006-09-18 10:06), 0.7-4 (2006-09-29 23:41), 0.8-1 (2007-01-12 09:28), 0.8-2 (2007-04-24 14:18), 0.9-1 (2007-08-25 18:46), 0.9-2 (2007-10-03 09:45), 0.9-3 (2007-10-17 09:18), 0.9-4 (2008-03-03 19:52), 0.9-5 (2008-12-05 09:54), 0.9-6 (2009-02-17 20:23), 1.0-1 (2009-07-01 14:02), 1.0-2 (2009-07-18 17:22), 1.0-3 (2009-07-30 14:51), 1.0-4 (2009-09-08 07:05), 1.0-5 (2009-11-29 18:23), 1.0-6 (2010-05-11 20:43), 1.0-7 (2010-06-04 23:33), 1.0-8 (2010-10-19 18:30), 1.0-9 (2011-01-31 19:50), 1.0-10 (2011-02-28 10:28), 1.0-11 (2011-04-26 17:12), 1.1-1 (2011-07-23 15:02), 1.1-3 (2011-09-10 08:16), 1.1-4 (2011-09-26 16:24), 1.1-5 (2011-10-24 16:40), 1.2-1 (2011-11-14 20:01), 1.2-2 (2012-03-03 07:49), 1.2-3 (2012-04-16 08:09), 1.2-4.1 (2013-04-07 00:05), 1.2-4 (2012-06-14 12:36), 1.3-1 (2013-04-17 07:58), 1.3-2 (2013-04-19 19:53), 1.3-3 (2013-05-01 07:02), 1.3-4 (2016-02-11 08:27), 1.3-5 (2016-03-11 11:35), 1.3-6 (2016-04-15 08:32), 1.3-7 (2016-08-21 10:55), 1.3-8 (2016-10-27 11:17), 1.3-9 (2017-01-26 20:46), 1.4-0 (2017-06-05 20:19), 1.4-1 (2017-12-05 13:58), 1.4-2 (2018-01-21 20:10), 1.4-3 (2018-05-15 09:54), 1.4-4 (2018-09-14 07:30), 1.4-5 (2019-12-01 13:50), 1.4-6 (2020-02-13 08:10), 1.4-7 (2020-05-08 08:00), 1.4-8 (2020-05-31 23:30), 1.4-9 (2020-08-02 19:30), 1.5-0 (2021-01-20 12:50), 1.6-0 (2021-10-06 07:40), 1.6-1 (2022-03-03 13:20), 1.6-2 (2022-03-31 01:30), 1.6-3 (2022-04-13 13:12), 1.7-0 (2024-01-18 16:20)
Other packages that cited MCMCpack R package
View MCMCpack citation profile
Other R packages that MCMCpack depends, imports, suggests or enhances
Complete documentation for MCMCpack
Functions, R codes and Examples using the MCMCpack R package
Some associated functions: BayesFactor . Dirichlet . Euro2016 . HDPHMMnegbin . HDPHMMpoisson . HDPHSMMnegbin . HMMpanelFE . HMMpanelRE . InvGamma . InvWishart . MCMCSVDreg . MCMCbinaryChange . MCMCdynamicEI . MCMCdynamicIRT1d . MCMCfactanal . MCMChierEI . MCMChlogit . MCMChpoisson . MCMChregress . MCMCirt1d . MCMCirtHier1d . MCMCirtKd . MCMCirtKdRob . MCMClogit . MCMCmetrop1R . MCMCmixfactanal . MCMCmnl . MCMCnegbin . MCMCnegbinChange . MCMCoprobit . MCMCoprobitChange . MCMCordfactanal . MCMCpaircompare . MCMCpaircompare2d . MCMCpaircompare2dDP . MCMCpoisson . MCMCpoissonChange . MCMCprobit . MCMCprobitChange . MCMCquantreg . MCMCregress . MCMCregressChange . MCMCresidualBreakAnalysis . MCMCtobit . MCbinomialbeta . MCmultinomdirichlet . MCnormalnormal . MCpoissongamma . Nethvote . NoncenHypergeom . PErisk . PostProbMod . Rehnquist . SSVSquantreg . Senate . SupremeCourt . Wishart . choicevar . dtomogplot . make.breaklist . mptable . plot.qrssvs . plotChangepoint . plotHDPChangepoint . plotState . procrustes . read.Scythe . summaryqrssvs . testpanelGroupBreak . testpanelSubjectBreak . tomogplot . topmodels . vech . write.Scythe . xpnd . 
Some associated R codes: BayesFactors.R . HDPHMMnegbin.R . HDPHMMpoisson.R . HDPHSMMnegbin.R . HMMpanelFE.R . HMMpanelRE.R . MCMCSVDreg.R . MCMCbinaryChange.R . MCMCdynamicEI.R . MCMCdynamicIRT1d-b.R . MCMCdynamicIRT1d.R . MCMCfactanal.R . MCMChierBetaBinom.R . MCMChierEI.R . MCMChlogit.R . MCMChpoisson.R . MCMChregress.R . MCMCirt1d.R . MCMCirtHier1d.R . MCMCirtKd.R . MCMCirtKdRob.R . MCMClogit.R . MCMCmetrop1R.R . MCMCmixfactanal.R . MCMCmnl.R . MCMCnegbin.R . MCMCnegbinChange.R . MCMCoprobit.R . MCMCoprobitChange.R . MCMCordfactanal.R . MCMCpack-package.R . MCMCpaircompare.R . MCMCpaircompare2d.R . MCMCpaircompare2dDP.R . MCMCpoisson.R . MCMCpoissonChange.R . MCMCprobit.R . MCMCprobitChange.R . MCMCquantreg.R . MCMCregress.R . MCMCregressChange.R . MCMCresidualBreakAnalysis.R . MCMCtobit.R . MCmodels.R . SSVSquantreg.R . SSVSquantregsummary.R . automate.R . btsutil.R . data.R . distn.R . hdp-utils.R . hidden-hmodels.R . hidden.R . make.breaklist.R . procrust.R . scythe.R . testpanelGroupBreak.R . testpanelSubjectBreak.R . tomog.R . utility.R . zzz.R .  Full MCMCpack package functions and examples
Downloads during the last 30 days
03/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/14Downloads for MCMCpack200300400500600700800900100011001200TrendBars

Today's Hot Picks in Authors and Packages

datadictionary  
Create a Data Dictionary
Creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add va ...
Download / Learn more Package Citations See dependency  
MM4LMM  
Inference of Linear Mixed Models Through MM Algorithm
The main function MMEst() performs (Restricted) Maximum Likelihood in a variance component mixed mod ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
apache.sedona  
R Interface for Apache Sedona
R interface for 'Apache Sedona' based on 'sparklyr' (). ...
Download / Learn more Package Citations See dependency  
hkclustering  
Ensemble Clustering using K Means and Hierarchical Clustering
Implements an ensemble algorithm for clustering combining a k-means and a hierarchical clustering ap ...
Download / Learn more Package Citations See dependency  
MultiKink  
Estimation and Inference for Multi-Kink Quantile Regression
Estimation and inference for multiple kink quantile regression for longitudinal data and the i.i.d d ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,993

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA