Other packages > Find by keyword >

MARSS  

Multivariate Autoregressive State-Space Modeling
View on CRAN: Click here


Download and install MARSS package within the R console
Install from CRAN:
install.packages("MARSS")

Install from Github:
library("remotes")
install_github("cran/MARSS")

Install by package version:
library("remotes")
install_version("MARSS", "3.11.9")



Attach the package and use:
library("MARSS")
Maintained by
Elizabeth Eli Holmes
[Scholar Profile | Author Map]
First Published: 2010-06-22
Latest Update: 2023-05-20
Description:
The MARSS package provides maximum-likelihood parameter estimation for constrained and unconstrained linear multivariate autoregressive state-space (MARSS) models, including partially deterministic models. MARSS models are a class of dynamic linear model (DLM) and vector autoregressive model (VAR) model. Fitting available via Expectation-Maximization (EM), BFGS (using optim), and 'TMB' (using the 'marssTMB' companion package). Functions are provided for parametric and innovations bootstrapping, Kalman filtering and smoothing, model selection criteria including bootstrap AICb, confidences intervals via the Hessian approximation or bootstrapping, and all conditional residual types. See the user guide for examples of dynamic factor analysis, dynamic linear models, outlier and shock detection, and multivariate AR-p models. Online workshops (lectures, eBook, and computer labs) at .
How to cite:
Elizabeth Eli Holmes (2010). MARSS: Multivariate Autoregressive State-Space Modeling. R package version 3.11.9, https://cran.r-project.org/web/packages/MARSS. Accessed 29 Mar. 2025.
Previous versions and publish date:
1.0 (2010-06-22 10:29), 1.1 (2010-10-19 09:31), 2.3 (2011-07-31 08:42), 2.4 (2011-08-01 07:14), 2.5 (2011-08-05 08:11), 2.6 (2011-10-19 09:37), 2.7 (2011-10-23 12:07), 2.8 (2012-01-30 21:18), 2.9 (2012-05-30 08:47), 3.1 (2012-07-13 18:24), 3.2 (2012-08-30 07:14), 3.3 (2013-01-26 08:19), 3.4 (2013-02-18 17:01), 3.5 (2013-10-23 00:54), 3.6 (2013-11-26 23:55), 3.7 (2013-12-14 00:38), 3.8 (2014-03-18 07:35), 3.9 (2014-03-21 01:22), 3.10.8 (2018-04-14 05:10), 3.10.10 (2018-11-02 06:20), 3.10.12 (2020-02-04 06:30), 3.11.1 (2020-08-27 09:50), 3.11.3 (2020-10-21 06:30), 3.11.4 (2021-12-15 08:40), 3.11.8 (2023-05-20 08:50)
Other packages that cited MARSS R package
View MARSS citation profile
Other R packages that MARSS depends, imports, suggests or enhances
Complete documentation for MARSS
Functions, R codes and Examples using the MARSS R package
Some associated functions: CSEGriskfigure . CSEGtmufigure . MARSS-package . MARSS . MARSSFisherI . MARSS_dfa . MARSS_marss . MARSS_marxss . MARSS_vectorized . MARSSaic . MARSSapplynames . MARSSboot . MARSSharveyobsFI . MARSShatyt . MARSShessian . MARSShessian_numerical . MARSSinfo . MARSSinits . MARSSinnovationsboot . MARSSkem . MARSSkemcheck . MARSSkf . MARSSoptim . MARSSparamCIs . MARSSresiduals . MARSSresiduals_tT . MARSSresiduals_tt1 . MARSSresiduals_ttt . MARSSsimulate . MARSSvectorizeparam . SalmonSurvCUI . accuracy_marssMLE . allowed . as_marssMODEL . checkMARSSInputs . checkModelList . coef_marssMLE . datasets . describe_marssMODEL . fitted_marssMLE . forecast_marssMLE . glance_marssMLE . graywhales . harborSeal . is_marssMLE . is_marssMODEL . isleRoyal . ldiag . logLik_marssMLE . loggerhead . marssMLE-class . marssMODEL-class . marssPredict-class . marssResiduals-class . match_arg_exact . model_frame_marssMODEL . plankton . plot_marssMLE . plot_marssPredict . plot_marssResiduals . predict_help . predict_marssMLE . print_marssMLE . print_marssMODEL . print_marssPredict . residuals_marssMLE . stdInnov . sysdata . tidy_marssMLE . toLatex_marssMLE . tsSmooth_marssMLE . utility_functions . zscore . 
Some associated R codes: CSEGriskfigure.R . CSEGtmufigure.R . MARSS.R . MARSS_marss.R . MARSS_marxss.R . MARSSaic.R . MARSSapplynames.R . MARSSboot.R . MARSSharveyobsFI.R . MARSShessian.R . MARSShessian_numerical.R . MARSSinfo.R . MARSSinits.R . MARSSinnovationsboot.R . MARSSkfss.R . MARSSparamCIs.R . MARSSresiduals.R . MARSSresiduals.tT.R . MARSSresiduals_tt.R . MARSSresiduals_tt1.R . MARSSsimulate.R . MARSSvectorizeparam.R . accuracy_marssMLE.R . autoplot_marssMLE.R . autoplot_marssPredict.R . autoplot_marssResiduals.R . describe_marssMODEL.R . forecast_marssMLE.R . glance_marssMLE.R . is_marssMODEL.R . logLik_marssMLE.R . model_frame_marssMODEL.R . onLoad.R . plot_marssMLE.R . plot_marssPredict.R . plot_marssResiduals.R . predict_marssMLE.R . print_marssMODEL.R . print_marssPredict.R . progressBar.R . residuals_marssMLE.R . summary_marssMLE.R . summary_marssMODEL.R . tidy_marssMLE.R . toLatex_marssMODEL.R . tsSmooth_marssMLE.R . utility_functions.R .  Full MARSS package functions and examples
Downloads during the last 30 days
02/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/28Downloads for MARSS01020304050607080TrendBars

Today's Hot Picks in Authors and Packages

landmix  
Landmark Prediction for Mixture Data
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a l ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
gglgbtq  
Show Pride on 'ggplot2' Plots
Provides multiple palettes based on pride flags with tailored themes. ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA