Other packages > Find by keyword >

LearnClust  

Learning Hierarchical Clustering Algorithms
View on CRAN: Click here


Download and install LearnClust package within the R console
Install from CRAN:
install.packages("LearnClust")

Install from Github:
library("remotes")
install_github("cran/LearnClust")

Install by package version:
library("remotes")
install_version("LearnClust", "1.1")



Attach the package and use:
library("LearnClust")
Maintained by
Roberto Alcantara
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2020-09-30
Latest Update: 2020-11-29
Description:
Classical hierarchical clustering algorithms, agglomerative and divisive clustering. Algorithms are implemented as a theoretical way, step by step. It includes some detailed functions that explain each step. Every function allows options to get different results using different techniques. The package explains non expert users how hierarchical clustering algorithms work.
How to cite:
Roberto Alcantara (2020). LearnClust: Learning Hierarchical Clustering Algorithms. R package version 1.1, https://cran.r-project.org/web/packages/LearnClust. Accessed 18 Feb. 2025.
Previous versions and publish date:
1.0 (2020-09-30 11:30)
Other packages that cited LearnClust R package
View LearnClust citation profile
Other R packages that LearnClust depends, imports, suggests or enhances
Complete documentation for LearnClust
Functions, R codes and Examples using the LearnClust R package
Some associated functions: agglomerativeHC.details . agglomerativeHC . canberradistance.details . canberradistance . canberradistanceW.details . canberradistanceW . chebyshevDistance.details . chebyshevDistance . chebyshevDistanceW.details . chebyshevDistanceW . clusterDistance.details . clusterDistance . clusterDistanceByApproach.details . clusterDistanceByApproach . complementaryClusters.details . complementaryClusters . correlationHC.details . correlationHC . distances.details . distances . divisiveHC.details . divisiveHC . edistance.details . edistance . edistanceW.details . edistanceW . getCluster.details . getCluster . getClusterDivisive.details . getClusterDivisive . initClusters.details . initClusters . initData.details . initData . initImages . initTarget.details . initTarget . matrixDistance . maxDistance.details . maxDistance . mdAgglomerative.details . mdAgglomerative . mdDivisive.details . mdDivisive . mdistance.details . mdistance . mdistanceW.details . mdistanceW . minDistance.details . minDistance . newCluster.details . newCluster . normalizeWeight.details . normalizeWeight . octileDistance.details . octileDistance . octileDistanceW.details . octileDistanceW . toList.details . toList . toListDivisive.details . toListDivisive . usefulClusters . 
Some associated R codes: agglomerativeHC.R . agglomerativeHC.details.R . canberraDistance.R . canberraDistance.details.R . canberraDistanceW.R . canberraDistanceW.details.R . chebyshevDistance.R . chebyshevDistance.details.R . chebyshevDistanceW.R . chebyshevDistanceW.details.R . clusterDistance.R . clusterDistance.details.R . clusterDistanceByApproach.R . clusterDistanceByApproach.details.R . complementaryClusters.R . complementaryClusters.details.R . correlationHC.R . correlationHC.details.R . distances.R . distances.details.R . divisiveHC.R . divisiveHC.details.R . eDistanceW.R . eDistanceW.details.R . euclideanDistance.R . euclideanDistance.details.R . getCluster.R . getCluster.details.R . getClusterDivisive.R . getClusterDivisive.details.R . initClusters.R . initClusters.details.R . initData.R . initData.details.R . initImages.R . initTarget.R . initTarget.details.R . manhattanDistance.R . manhattanDistance.details.R . manhattanDistanceW.R . manhattanDistanceW.details.R . matrixDistance.R . maxDistance.R . maxDistance.details.R . mdAgglomerative.R . mdAgglomerative.details.R . mdDivisive.R . mdDivisive.details.R . minDistance.R . minDistance.details.R . newCluster.R . newCluster.details.R . normalizeWeight.R . normalizeWeight.details.R . octileDistance.R . octileDistance.details.R . octileDistanceW.R . octileDistanceW.details.R . toList.R . toList.details.R . toListDivisive.R . toListDivisive.details.R . usefulClusters.R .  Full LearnClust package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

ppmf  
Read Census Privacy Protected Microdata Files
Implements data processing described in to align modern differentially ...
Download / Learn more Package Citations See dependency  
fclust  
Fuzzy Clustering
Algorithms for fuzzy clustering, cluster validity indices and plots for cluster validity and visuali ...
Download / Learn more Package Citations See dependency  
MOSS  
Multi-Omic Integration via Sparse Singular Value Decomposition
High dimensionality, noise and heterogeneity among samples and features challenge the omic integrat ...
Download / Learn more Package Citations See dependency  
OptGS  
Near-Optimal Group-Sequential Designs for Continuous Outcomes
Optimal group-sequential designs minimise some function of the expected and maximum sample size whil ...
Download / Learn more Package Citations See dependency  
clustMixType  
k-Prototypes Clustering for Mixed Variable-Type Data
Functions to perform k-prototypes partitioning clustering for mixed variable-type data according to ...
Download / Learn more Package Citations See dependency  
readxlsb  
Read 'Excel' Binary (.xlsb) Workbooks
Import data from 'Excel' binary (.xlsb) workbooks into R. ...
Download / Learn more Package Citations See dependency  

23,712

R Packages

205,795

Dependencies

64,332

Author Associations

23,631

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA