Other packages > Find by keyword >

LearnClust  

Learning Hierarchical Clustering Algorithms
View on CRAN: Click here


Download and install LearnClust package within the R console
Install from CRAN:
install.packages("LearnClust")

Install from Github:
library("remotes")
install_github("cran/LearnClust")

Install by package version:
library("remotes")
install_version("LearnClust", "1.1")



Attach the package and use:
library("LearnClust")
Maintained by
Roberto Alcantara
[Scholar Profile | Author Map]
First Published: 2020-09-30
Latest Update: 2020-11-29
Description:
Classical hierarchical clustering algorithms, agglomerative and divisive clustering. Algorithms are implemented as a theoretical way, step by step. It includes some detailed functions that explain each step. Every function allows options to get different results using different techniques. The package explains non expert users how hierarchical clustering algorithms work.
How to cite:
Roberto Alcantara (2020). LearnClust: Learning Hierarchical Clustering Algorithms. R package version 1.1, https://cran.r-project.org/web/packages/LearnClust. Accessed 29 Mar. 2025.
Previous versions and publish date:
1.0 (2020-09-30 11:30)
Other packages that cited LearnClust R package
View LearnClust citation profile
Other R packages that LearnClust depends, imports, suggests or enhances
Complete documentation for LearnClust
Functions, R codes and Examples using the LearnClust R package
Some associated functions: agglomerativeHC.details . agglomerativeHC . canberradistance.details . canberradistance . canberradistanceW.details . canberradistanceW . chebyshevDistance.details . chebyshevDistance . chebyshevDistanceW.details . chebyshevDistanceW . clusterDistance.details . clusterDistance . clusterDistanceByApproach.details . clusterDistanceByApproach . complementaryClusters.details . complementaryClusters . correlationHC.details . correlationHC . distances.details . distances . divisiveHC.details . divisiveHC . edistance.details . edistance . edistanceW.details . edistanceW . getCluster.details . getCluster . getClusterDivisive.details . getClusterDivisive . initClusters.details . initClusters . initData.details . initData . initImages . initTarget.details . initTarget . matrixDistance . maxDistance.details . maxDistance . mdAgglomerative.details . mdAgglomerative . mdDivisive.details . mdDivisive . mdistance.details . mdistance . mdistanceW.details . mdistanceW . minDistance.details . minDistance . newCluster.details . newCluster . normalizeWeight.details . normalizeWeight . octileDistance.details . octileDistance . octileDistanceW.details . octileDistanceW . toList.details . toList . toListDivisive.details . toListDivisive . usefulClusters . 
Some associated R codes: agglomerativeHC.R . agglomerativeHC.details.R . canberraDistance.R . canberraDistance.details.R . canberraDistanceW.R . canberraDistanceW.details.R . chebyshevDistance.R . chebyshevDistance.details.R . chebyshevDistanceW.R . chebyshevDistanceW.details.R . clusterDistance.R . clusterDistance.details.R . clusterDistanceByApproach.R . clusterDistanceByApproach.details.R . complementaryClusters.R . complementaryClusters.details.R . correlationHC.R . correlationHC.details.R . distances.R . distances.details.R . divisiveHC.R . divisiveHC.details.R . eDistanceW.R . eDistanceW.details.R . euclideanDistance.R . euclideanDistance.details.R . getCluster.R . getCluster.details.R . getClusterDivisive.R . getClusterDivisive.details.R . initClusters.R . initClusters.details.R . initData.R . initData.details.R . initImages.R . initTarget.R . initTarget.details.R . manhattanDistance.R . manhattanDistance.details.R . manhattanDistanceW.R . manhattanDistanceW.details.R . matrixDistance.R . maxDistance.R . maxDistance.details.R . mdAgglomerative.R . mdAgglomerative.details.R . mdDivisive.R . mdDivisive.details.R . minDistance.R . minDistance.details.R . newCluster.R . newCluster.details.R . normalizeWeight.R . normalizeWeight.details.R . octileDistance.R . octileDistance.details.R . octileDistanceW.R . octileDistanceW.details.R . toList.R . toList.details.R . toListDivisive.R . toListDivisive.details.R . usefulClusters.R .  Full LearnClust package functions and examples
Downloads during the last 30 days
02/2702/2803/0103/0203/0303/0403/0503/0603/0703/0803/0903/1003/1103/1203/1303/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/28Downloads for LearnClust012345678910111213TrendBars

Today's Hot Picks in Authors and Packages

quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
landmix  
Landmark Prediction for Mixture Data
Non-parametric prediction of survival outcomes for mixture data that incorporates covariates and a l ...
Download / Learn more Package Citations See dependency  
gglgbtq  
Show Pride on 'ggplot2' Plots
Provides multiple palettes based on pride flags with tailored themes. ...
Download / Learn more Package Citations See dependency  

23,842

R Packages

207,311

Dependencies

64,420

Author Associations

23,781

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA