Other packages > Find by keyword >

LatticeKrig  

Multi-Resolution Kriging Based on Markov Random Fields
View on CRAN: Click here


Download and install LatticeKrig package within the R console
Install from CRAN:
install.packages("LatticeKrig")

Install from Github:
library("remotes")
install_github("cran/LatticeKrig")

Install by package version:
library("remotes")
install_version("LatticeKrig", "9.3.0")



Attach the package and use:
library("LatticeKrig")
Maintained by
Douglas Nychka
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2011-09-09
Latest Update: 2019-11-09
Description:
Methods for the interpolation of large spatial datasets. This package follows a "fixed rank Kriging" approach but provides a surface fitting method that can approximate standard spatial data models. Using a large number of basis functions allows for estimates that can come close to interpolating the observations (a spatial model with a small nugget variance.) Moreover, the covariance model for this method can approximate the Matern covariance family but also allows for a multi-resolution model and supports efficient computation of the profile likelihood for estimating covariance parameters. This is accomplished through compactly supported basis functions and a Markov random field model for the basis coefficients. These features lead to sparse matrices for the computations and this package makes of the R spam package for sparse linear algebra. An extension of this version over previous ones ( < 5.4 ) is the support for different geometries besides a rectangular domain. The Markov random field approach combined with a basis function representation makes the implementation of different geometries simple where only a few specific R functions need to be added with most of the computation and evaluation done by generic routines that have been tuned to be efficient. One benefit of this package's model/approach is the facility to do unconditional and conditional simulation of the field for large numbers of arbitrary points. There is also the flexibility for estimating non-stationary covariances and also the case when the observations are a linear combination (e.g. an integral) of the spatial process. Included are generic methods for prediction, standard errors for prediction, plotting of the estimated surface and conditional and unconditional simulation. See the 'LatticeKrig' GitHub repository for a vignette of this package. Development of this package was supported in part by the National Science Foundation Grant 1417857 and the National Center for Atmospheric Research.
How to cite:
Douglas Nychka (2011). LatticeKrig: Multi-Resolution Kriging Based on Markov Random Fields. R package version 9.3.0, https://cran.r-project.org/web/packages/LatticeKrig. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.2.1 (2011-09-09 09:10), 1.4 (2012-02-10 17:36), 2.2.1 (2012-08-29 07:11), 2.4.3 (2013-04-16 07:43), 3.1 (2014-01-24 23:58), 3.3 (2014-07-11 06:47), 3.4 (2014-08-28 07:01), 5.4-1 (2015-11-05 08:31), 5.4 (2015-10-22 22:14), 5.5 (2016-05-22 09:20), 6.2 (2016-12-20 19:12), 6.4 (2017-05-23 05:39), 7.0 (2018-04-30 20:39), 8.4 (2019-11-09 16:40)
Other packages that cited LatticeKrig R package
View LatticeKrig citation profile
Other R packages that LatticeKrig depends, imports, suggests or enhances
Complete documentation for LatticeKrig
Functions, R codes and Examples using the LatticeKrig R package
Some associated functions: IcosohedronGrid . KrigingExampleData . LKDiag . LKDist . LKGeometry . LKRectangle . LKinfoCheck . LKrig.MLE . LKrig.basis . LKrig . LKrig.sim . LKrigDefaultFixedFunction . LKrigDistance-methods . LKrigInternal . LKrigLatticeCenters . LKrigMiscellaneous . LKrigNormalizeBasis . LKrigSAR . LKrigSetup . LKrigSetupAlpha . LKrigSetupAwght . LKrigSetupLattice . LatticeKrig . PeriodicGeometry . Radial.Basis . VignetteExamples . directionCosines . gridList-class . nonstationaryModels . registerdFORTRAN . setDefaultsLKinfo . 
Some associated R codes: Awght2Omega.R . GridList.R . LKDiag.R . LKDist.R . LKDistComponents.R . LKDistGrid.R . LKDistGridComponents.R . LKGridCheck.R . LKGridFindNmax.R . LKRectangleFastNormalization.R . LKSphere-Internal.R . LKinfoCheck.R . LKinfoUpdate.R . LKrig.MLE.R . LKrig.R . LKrig.basis.R . LKrig.coef.R . LKrig.cov.R . LKrig.cov.plot.R . LKrig.lnPlike.R . LKrig.make.par.grid.R . LKrig.misc.R . LKrig.precision.R . LKrig.quadraticform.R . LKrig.sim.R . LKrig.sim.conditional.R . LKrig.spind2spam.R . LKrig.traceA.R . LKrigCovWeightedObs.R . LKrigDefaultFixedFunction.R . LKrigDistance.R . LKrigFindLambda.R . LKrigFindLambdaAwght.R . LKrigLatticeCenters.R . LKrigLatticeScales.R . LKrigMakewU.R . LKrigMakewX.R . LKrigMarginalVariance.R . LKrigNormalizeBasis.R . LKrigSAR.R . LKrigSetup.R . LKrigSetupAlpha.R . LKrigSetupAwght.R . LKrigSetupAwghtObject.R . LKrigSetupLattice.R . LKrigUnrollGrid.R . LatticeKrig.R . LatticeKrigEasyDefaults.R . ModelBox.R . ModelCylinder.R . ModelInterval.R . ModelLKSphere.R . ModelRectangle.R . ModelRing.R . Radial.basis.R . Tensor.basis.R . WendlandFunction.R . convertIndexPeriodic.R . createLKrigObject.R . directionCosines.R . predict.LKrig.R . predictLKrigFixedFunction.R . predictSE.LKrig.R . predictSurface.LKrig.R . print.LKinfo.R . print.LKrig.R . print.LatticeKrig.R . setDefaultsLKinfo.R . summary.LKrig.R . surface.LKrig.R . triWeight.R . zzz.R .  Full LatticeKrig package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA