R package citation, R package reverse dependencies, R package scholars, install an r package from GitHub hy is package acceptance pending why is package undeliverable amazon why is package on hold dhl tour packages why in r package r and r package full form why is r free why r is bad which r package to install which r package has which r package which r package version which r package readxl which r package ggplot which r package fread which r package license where is package.json where is package-lock.json where is package.swift where is package explorer in eclipse where is package where is package manager unity where is package installer android where is package manager console in visual studio who r package which r package to install which r package version who is package who is package deal who is package design r and r package full form r and r package meaning what r package has what package r what is package in java what is package what is package-lock.json what is package in python what is package.json what is package installer do r package can't install r packages r can't find package r can't load package can't load xlsx package r can't install psych package r can't install sf package r Write if else in NONMEM pk pd
ICompELM
View on CRAN: Click
here
Download and install ICompELM package within the R console
Install from CRAN:
install.packages("ICompELM")
Install from Github:
library("remotes")
install_github("cran/ICompELM")
Install by package version:
library("remotes")
install_version("ICompELM", "0.1.0")
Attach the package and use:
library("ICompELM")
Maintained by
Saikath Das
[Scholar Profile | Author Map]
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2024-06-10
Latest Update: 2024-06-10
Description:
Single Layer Feed-forward Neural networks (SLFNs) have many applications in various fields of statistical modelling, especially for time-series forecasting. However, there are some major disadvantages of training such networks via the widely accepted 'gradient-based backpropagation' algorithm, such as convergence to local minima, dependencies on learning rate and large training time. These concerns were addressed by Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, wherein they introduced the Extreme Learning Machine (ELM), an extremely fast learning algorithm for SLFNs which randomly chooses the weights connecting input and hidden nodes and analytically determines the output weights of SLFNs. It shows good generalized performance, but is still subject to a high degree of randomness. To mitigate this issue, this package uses a dimensionality reduction technique given in Hyvarinen (1999) <doi:10.1109/72.761722>, namely, the Independent Component Analysis (ICA) to determine the input-hidden connections and thus, remove any sort of randomness from the algorithm. This leads to a robust, fast and stable ELM model. Using functions within this package, the proposed model can also be compared with an existing alternative based on the Principal Component Analysis (PCA) algorithm given by Pearson (1901) <doi:10.1080/14786440109462720>, i.e., the PCA based ELM model given by Castano et al. (2013) <doi:10.1007/s11063-012-9253-x>, from which the implemented ICA based algorithm is greatly inspired.
How to cite:
Saikath Das (2024). ICompELM: Independent Component Analysis Based Extreme Learning Machine. R package version 0.1.0, https://cran.r-project.org/web/packages/ICompELM. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited ICompELM R package
View ICompELM citation profile
Other R packages that ICompELM depends,
imports, suggests or enhances
Complete documentation for ICompELM
Functions, R codes and Examples using
the ICompELM R package
Full ICompELM package
functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by
helping add
Reviews / comments / questions /suggestions ↴↴↴
Today's Hot Picks in Authors and Packages
dmlalg
Implementation of double machine learning (DML) algorithms in R,
based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Corinne Emmenegger (view profile)
Rfast2
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Manos Papadakis (view profile)
composits
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Sevvandi Kandanaarachchi (view profile)
quickcode
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Obinna Obianom (view profile)
LOGANTree
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Qi Qin (view profile)
wordspace
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency
Download / Learn more Package Citations See dependency
Maintainer: Stephanie Evert (view profile)