Other packages > Find by keyword >

ICompELM  

Independent Component Analysis Based Extreme Learning Machine
View on CRAN: Click here


Download and install ICompELM package within the R console
Install from CRAN:
install.packages("ICompELM")

Install from Github:
library("remotes")
install_github("cran/ICompELM")

Install by package version:
library("remotes")
install_version("ICompELM", "0.1.0")



Attach the package and use:
library("ICompELM")
Maintained by
Saikath Das
[Scholar Profile | Author Map]
First Published: 2024-06-10
Latest Update: 2024-06-10
Description:
Single Layer Feed-forward Neural networks (SLFNs) have many applications in various fields of statistical modelling, especially for time-series forecasting. However, there are some major disadvantages of training such networks via the widely accepted 'gradient-based backpropagation' algorithm, such as convergence to local minima, dependencies on learning rate and large training time. These concerns were addressed by Huang et al. (2006) <doi:10.1016/j.neucom.2005.12.126>, wherein they introduced the Extreme Learning Machine (ELM), an extremely fast learning algorithm for SLFNs which randomly chooses the weights connecting input and hidden nodes and analytically determines the output weights of SLFNs. It shows good generalized performance, but is still subject to a high degree of randomness. To mitigate this issue, this package uses a dimensionality reduction technique given in Hyvarinen (1999) <doi:10.1109/72.761722>, namely, the Independent Component Analysis (ICA) to determine the input-hidden connections and thus, remove any sort of randomness from the algorithm. This leads to a robust, fast and stable ELM model. Using functions within this package, the proposed model can also be compared with an existing alternative based on the Principal Component Analysis (PCA) algorithm given by Pearson (1901) <doi:10.1080/14786440109462720>, i.e., the PCA based ELM model given by Castano et al. (2013) <doi:10.1007/s11063-012-9253-x>, from which the implemented ICA based algorithm is greatly inspired.
How to cite:
Saikath Das (2024). ICompELM: Independent Component Analysis Based Extreme Learning Machine. R package version 0.1.0, https://cran.r-project.org/web/packages/ICompELM. Accessed 29 Apr. 2025.
Previous versions and publish date:
No previous versions
Other packages that cited ICompELM R package
View ICompELM citation profile
Other R packages that ICompELM depends, imports, suggests or enhances
Complete documentation for ICompELM
Functions, R codes and Examples using the ICompELM R package
Full ICompELM package functions and examples
Downloads during the last 30 days
03/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/1204/1304/1404/1504/1604/1704/1804/1904/2004/2104/2204/2304/2404/2504/2604/2704/28Downloads for ICompELM0510152025303540455055TrendBars

Today's Hot Picks in Authors and Packages

PCAmatchR  
Match Cases to Controls Based on Genotype Principal Components
Matches cases to controls based on genotype principal components (PC). In order to produce better r ...
Download / Learn more Package Citations See dependency  
NBBDesigns  
Neighbour Balanced Block Designs (NBBDesigns)
Neighbour-balanced designs ensure that no treatment is disadvantaged unfairly by its surroundings. T ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
knockoff  
The Knockoff Filter for Controlled Variable Selection
The knockoff filter is a general procedure for controlling the false discovery rate (FDR) when perf ...
Download / Learn more Package Citations See dependency  
bigGP  
Distributed Gaussian Process Calculations
Distributes Gaussian process calculations across nodes in a distributed memory setting, using Rmpi. ...
Download / Learn more Package Citations See dependency  
phecodemap  
Visualization for PheCode Mapping with ICD-9 and ICD-10-CM Codes
To build a shiny app for visualization of the hierarchy of PheCode Mapping with International Classi ...
Download / Learn more Package Citations See dependency  

24,142

R Packages

207,311

Dependencies

65,176

Author Associations

24,143

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA