Other packages > Find by keyword >

HistDAWass  

Histogram-Valued Data Analysis
View on CRAN: Click here


Download and install HistDAWass package within the R console
Install from CRAN:
install.packages("HistDAWass")

Install from Github:
library("remotes")
install_github("cran/HistDAWass")

Install by package version:
library("remotes")
install_version("HistDAWass", "1.0.8")



Attach the package and use:
library("HistDAWass")
Maintained by
Antonio Irpino
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2015-02-18
Latest Update: 2024-01-24
Description:
In the framework of Symbolic Data Analysis, a relatively new approach to the statistical analysis of multi-valued data, we consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., the Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series. An introducing paper is Irpino A. Verde R. (2015) .
How to cite:
Antonio Irpino (2015). HistDAWass: Histogram-Valued Data Analysis. R package version 1.0.8, https://cran.r-project.org/web/packages/HistDAWass. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.1.1 (2015-02-24 15:29), 0.1.2 (2015-03-17 20:44), 0.1.3 (2015-07-16 14:24), 0.1.4 (2016-01-12 22:21), 0.1.6 (2017-02-13 11:27), 0.1.7 (2017-09-21 22:46), 0.1.8 (2017-10-06 17:55), 0.1 (2015-02-18 17:08), 1.0.0 (2017-12-07 17:02), 1.0.1 (2018-03-20 17:23), 1.0.3 (2019-06-05 15:40), 1.0.4 (2020-02-19 10:00), 1.0.5 (2021-05-24 18:20), 1.0.6 (2021-06-22 19:20), 1.0.7 (2022-09-26 11:40)
Other packages that cited HistDAWass R package
View HistDAWass citation profile
Other R packages that HistDAWass depends, imports, suggests or enhances
Complete documentation for HistDAWass
Functions, R codes and Examples using the HistDAWass R package
Some associated functions: Age_Pyramids_2014 . Agronomique . BLOOD . BloodBRITO . Center.cell.MatH-methods . China_Month . China_Seas . DouglasPeucker . HTS-class . HTS.exponential.smoothing . HTS.moving.averages . HTS.predict.knn . HistDAWass-package . MatH-class . OzoneFull . OzoneH . RetHTS . ShortestDistance . TMatH-class . TdistributionH-class . WH.1d.PCA . WH.MultiplePCA . WH.SSQ-methods . WH.SSQ2-methods . WH.bind-methods . WH.bind.col-methods . WH.bind.row-methods . WH.correlation-methods . WH.correlation2-methods . WH.mat.prod-methods . WH.mat.sum-methods . WH.plot_multiple_Spanish.funs . WH.plot_multiple_indivs . WH.regression.GOF . WH.regression.two.components . WH.regression.two.components.predict . WH.var.covar-methods . WH.var.covar2-methods . WH.vec.mean-methods . WH.vec.sum-methods . WH_2d_Adaptive_Kohonen_maps . WH_2d_Kohonen_maps . WH_MAT_DIST . WH_adaptive.kmeans . WH_adaptive_fcmeans . WH_fcmeans . WH_hclust . WH_kmeans . WassSqDistH-methods . checkEmptyBins-methods . compP-methods . compQ-methods . crwtransform-methods . data2hist . distributionH-class . dotpW-methods . extract-methods . get.MatH.main.info-methods . get.MatH.ncols-methods . get.MatH.nrows-methods . get.MatH.rownames-methods . get.MatH.stats-methods . get.MatH.varnames-methods . get.cell.MatH-methods . get.distr-methods . get.histo-methods . get.m-methods . get.s-methods . is.registeredMH-methods . kurtH-methods . meanH-methods . minus . plot-HTS . plot-MatH . plot-TdistributionH . plot-distributionH . plotPredVsObs . plot_errors . plus-methods . rQQ-methods . register-methods . registerMH-methods . set.cell.MatH-methods . show-MatH-methods . show-distributionH-methods . skewH-methods . stations_coordinates . stdH-methods . subsetHTS-methods . times-methods . 
Some associated R codes: All_classes.R . For_Rccp_int.R . Fuzzy_cmeans.R . H_time_series.R . HistDAWass-package.R . Kohonen_maps.R . Met_HTS.R . Met_MatH.R . Met_distributionH.R . Plotting_with_ggplot.R . RcppExports.R . Utility.R . principal_components.R . regression.R . unsuperv_classification.R .  Full HistDAWass package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA