Other packages > Find by keyword >

CausalQueries  

Make, Update, and Query Binary Causal Models
View on CRAN: Click here


Download and install CausalQueries package within the R console
Install from CRAN:
install.packages("CausalQueries")

Install from Github:
library("remotes")
install_github("cran/CausalQueries")

Install by package version:
library("remotes")
install_version("CausalQueries", "1.3.0")



Attach the package and use:
library("CausalQueries")
Maintained by
Till Tietz
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2020-06-03
Latest Update: 2024-01-15
Description:
Users can declare binary causal models, update beliefs about causal types given data and calculate arbitrary estimands. Model definition makes use of 'dagitty' functionality. Updating is implemented in 'stan'. The approach used in 'CausalQueries' is a generalization of the 'biqq' models described in "Mixing Methods: A Bayesian Approach" (Humphreys and Jacobs, 2015, ). The conceptual extension makes use of work on probabilistic causal models described in Pearl's Causality (Pearl, 2009, ).
How to cite:
Till Tietz (2020). CausalQueries: Make, Update, and Query Binary Causal Models. R package version 1.3.0, https://cran.r-project.org/web/packages/CausalQueries. Accessed 22 Dec. 2024.
Previous versions and publish date:
0.0.3 (2020-06-03 18:20), 0.1.0 (2022-06-28 00:20), 0.1.1 (2023-08-29 13:20), 1.0.0 (2023-10-13 20:30), 1.0.1 (2023-10-19 23:30), 1.0.2 (2024-01-15 22:10), 1.1.0 (2024-04-10 15:50), 1.1.1 (2024-04-26 11:00), 1.2.1 (2024-11-06 01:00), 1.3.0 (2024-12-14 07:50)
Other packages that cited CausalQueries R package
View CausalQueries citation profile
Other R packages that CausalQueries depends, imports, suggests or enhances
Complete documentation for CausalQueries
Functions, R codes and Examples using the CausalQueries R package
Some associated functions: CausalQueries-package . CausalQueries_internal_inherit_params . add_dots . add_wildcard . all_data_types . causal_type_names . check_string_input . clean_condition . clean_param_vector . clean_params . collapse_data . collapse_nodal_types . complements . data_to_data . data_type_names . decreasing . default_stan_control . democracy_data . draw_causal_type . drop_empty_families . expand_data . expand_nodal_expression . expand_wildcard . get_ambiguities_matrix . get_causal_types . get_data_families . get_event_prob . get_nodal_types . get_param_dist . get_parameter_matrix . get_parameter_names . get_parents . get_parmap . get_prior_distribution . get_query_types . get_type_names . get_type_prob . get_type_prob_multiple . gsub_many . includes_var . increasing . interacts . interpret_type . is_a_model . is_improper . list_non_parents . make_ambiguities_matrix . make_data . make_data_single . make_events . make_model . make_nodal_types . make_par_values . make_parameter_matrix . make_parmap . make_prior_distribution . minimal_data . minimal_event_data . n_check . nodes_in_statement . non_decreasing . non_increasing . observe_data . parameter_setting . perm . plot_dag . prep_stan_data . prior_setting . query_distribution . query_model . query_to_expression . realise_outcomes . restrict_by_labels . restrict_by_query . reveal_outcomes . set_ambiguities_matrix . set_confound . set_parameter_matrix . set_parmap . set_prior_distribution . set_restrictions . set_sampling_args . simulate_data . st_within . strategy_statements . substitutes . te . type_matrix . unpack_wildcard . update_causal_types . update_model . var_in_query . 
Some associated R codes: CausalQueries-package.R . clean_params.R . data.R . data_helpers.R . draw_causal_type.R . get_ambiguities_matrix.R . get_causal_types.R . get_event_prob.R . get_nodal_types.R . get_parents.R . get_query_types.R . get_type_helpers.R . get_type_prob.R . helpers.R . internal_inherit_params.R . make_data.R . make_models.R . make_par_values.R . map_query_to_causal_type.R . map_query_to_nodal_type.R . misc.R . parmap.R . plot_dag.R . prep_stan_data.R . query_helpers.R . query_model.R . realise_outcomes.R . set_confounds.R . set_parameter_matrix.R . set_parameters.R . set_prior_distribution.R . set_priors.R . set_restrictions.R . simulate_events.R . stanmodels.R . update_model.R . zzz.R .  Full CausalQueries package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA