Other packages > Find by keyword >

CausalQueries  

Make, Update, and Query Binary Causal Models
View on CRAN: Click here


Download and install CausalQueries package within the R console
Install from CRAN:
install.packages("CausalQueries")

Install from Github:
library("remotes")
install_github("cran/CausalQueries")

Install by package version:
library("remotes")
install_version("CausalQueries", "1.3.3")



Attach the package and use:
library("CausalQueries")
Maintained by
Till Tietz
[Scholar Profile | Author Map]
First Published: 2020-06-03
Latest Update: 2024-01-15
Description:
Users can declare binary causal models, update beliefs about causal types given data and calculate arbitrary estimands. Model definition makes use of 'dagitty' functionality. Updating is implemented in 'stan'. The approach used in 'CausalQueries' is a generalization of the 'biqq' models described in "Mixing Methods: A Bayesian Approach" (Humphreys and Jacobs, 2015, ). The conceptual extension makes use of work on probabilistic causal models described in Pearl's Causality (Pearl, 2009, ).
How to cite:
Till Tietz (2020). CausalQueries: Make, Update, and Query Binary Causal Models. R package version 1.3.3, https://cran.r-project.org/web/packages/CausalQueries. Accessed 13 Apr. 2025.
Previous versions and publish date:
0.0.3 (2020-06-03 18:20), 0.1.0 (2022-06-28 00:20), 0.1.1 (2023-08-29 13:20), 1.0.0 (2023-10-13 20:30), 1.0.1 (2023-10-19 23:30), 1.0.2 (2024-01-15 22:10), 1.1.0 (2024-04-10 15:50), 1.1.1 (2024-04-26 11:00), 1.2.1 (2024-11-06 01:00), 1.3.0 (2024-12-14 07:50), 1.3.1 (2024-12-17 16:10), 1.3.2 (2025-01-22 15:00)
Other packages that cited CausalQueries R package
View CausalQueries citation profile
Other R packages that CausalQueries depends, imports, suggests or enhances
Complete documentation for CausalQueries
Functions, R codes and Examples using the CausalQueries R package
Some associated functions: CausalQueries-package . CausalQueries_internal_inherit_params . add_dots . add_wildcard . all_data_types . causal_type_names . check_string_input . clean_condition . clean_param_vector . clean_params . collapse_data . collapse_nodal_types . complements . data_to_data . data_type_names . decreasing . default_stan_control . democracy_data . draw_causal_type . drop_empty_families . expand_data . expand_nodal_expression . expand_wildcard . get_ambiguities_matrix . get_causal_types . get_data_families . get_event_prob . get_nodal_types . get_param_dist . get_parameter_matrix . get_parameter_names . get_parents . get_parmap . get_prior_distribution . get_query_types . get_type_names . get_type_prob . get_type_prob_multiple . gsub_many . includes_var . increasing . interacts . interpret_type . is_a_model . is_improper . list_non_parents . make_ambiguities_matrix . make_data . make_data_single . make_events . make_model . make_nodal_types . make_par_values . make_parameter_matrix . make_parmap . make_prior_distribution . minimal_data . minimal_event_data . n_check . nodes_in_statement . non_decreasing . non_increasing . observe_data . parameter_setting . perm . plot_dag . prep_stan_data . prior_setting . query_distribution . query_model . query_to_expression . realise_outcomes . restrict_by_labels . restrict_by_query . reveal_outcomes . set_ambiguities_matrix . set_confound . set_parameter_matrix . set_parmap . set_prior_distribution . set_restrictions . set_sampling_args . simulate_data . st_within . strategy_statements . substitutes . te . type_matrix . unpack_wildcard . update_causal_types . update_model . var_in_query . 
Some associated R codes: CausalQueries-package.R . clean_params.R . data.R . data_helpers.R . draw_causal_type.R . get_ambiguities_matrix.R . get_causal_types.R . get_event_prob.R . get_nodal_types.R . get_parents.R . get_query_types.R . get_type_helpers.R . get_type_prob.R . helpers.R . internal_inherit_params.R . make_data.R . make_models.R . make_par_values.R . map_query_to_causal_type.R . map_query_to_nodal_type.R . misc.R . parmap.R . plot_dag.R . prep_stan_data.R . query_helpers.R . query_model.R . realise_outcomes.R . set_confounds.R . set_parameter_matrix.R . set_parameters.R . set_prior_distribution.R . set_priors.R . set_restrictions.R . simulate_events.R . stanmodels.R . update_model.R . zzz.R .  Full CausalQueries package functions and examples
Downloads during the last 30 days
03/1403/1503/1603/1703/1803/1903/2003/2103/2203/2303/2403/2503/2603/2703/2803/2903/3003/3104/0104/0204/0304/0404/0504/0604/0704/0804/0904/1004/1104/12Downloads for CausalQueries0510152025303540455055TrendBars

Today's Hot Picks in Authors and Packages

COMPoissonReg  
Conway-Maxwell Poisson (COM-Poisson) Regression
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, ...
Download / Learn more Package Citations See dependency  
ggprism  
A 'ggplot2' Extension Inspired by 'GraphPad Prism'
Provides various themes, palettes, and other functions that are used to customise ggplots to look l ...
Download / Learn more Package Citations See dependency  
optimParallel  
Parallel Version of the L-BFGS-B Optimization Method
Provides a parallel version of the L-BFGS-B method of optim(). The main function of the package is o ...
Download / Learn more Package Citations See dependency  
SPOTMisc  
Misc Extensions for the "SPOT" Package
Implements additional models, simulation tools, and interfaces as extensions to 'SPOT'. It provides ...
Download / Learn more Package Citations See dependency  
LDABiplots  
Biplot Graphical Interface for LDA Models
Contains the development of a tool that provides a web-based graphical user interface (GUI) to perf ...
Download / Learn more Package Citations See dependency  
nextGenShinyApps  
Craft Exceptional 'R Shiny' Applications and Dashboards with Novel Responsive Tools
Nove responsive tools for designing and developing 'Shiny' dashboards and applications. The scripts ...
Download / Learn more Package Citations See dependency  

24,012

R Packages

207,311

Dependencies

64,867

Author Associations

24,013

Publication Badges

© Copyright since 2022. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA