Other packages > Find by keyword >

BuyseTest  

Generalized Pairwise Comparisons
View on CRAN: Click here


Download and install BuyseTest package within the R console
Install from CRAN:
install.packages("BuyseTest")

Install from Github:
library("remotes")
install_github("cran/BuyseTest")

Install by package version:
library("remotes")
install_version("BuyseTest", "3.0.5")



Attach the package and use:
library("BuyseTest")
Maintained by
Brice Ozenne
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2016-08-17
Latest Update: 2023-03-20
Description:
Implementation of the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) for complete observations, and extended in Peron (2018) to deal with right-censoring. GPC compare two groups of observations (intervention vs. control group) regarding several prioritized endpoints to estimate the probability that a random observation drawn from one group performs better than a random observation drawn from the other group (Mann-Whitney parameter). The net benefit and win ratio statistics, i.e. the difference and ratio between the probabilities relative to the intervention and control groups, can then also be estimated. Confidence intervals and p-values are obtained based on asymptotic results (Ozenne 2021 ), non-parametric bootstrap, or permutations. The software enables the use of thresholds of minimal importance difference, stratification, non-prioritized endpoints (O Brien test), and can handle right-censoring and competing-risks.
How to cite:
Brice Ozenne (2016). BuyseTest: Generalized Pairwise Comparisons. R package version 3.0.5, https://cran.r-project.org/web/packages/BuyseTest. Accessed 22 Dec. 2024.
Previous versions and publish date:
1.0 (2016-08-17 10:40), 1.3.2 (2018-05-29 09:28), 1.5.0 (2018-09-26 16:20), 1.6 (2018-10-17 12:30), 1.7 (2019-01-16 10:00), 1.8.3 (2020-01-16 15:50), 1.8.4 (2020-02-14 14:50), 1.8.5 (2020-03-03 13:20), 1.8 (2019-11-13 17:50), 2.1.0 (2020-04-26 17:20), 2.1.3 (2020-05-07 17:10), 2.2.1 (2021-01-05 21:40), 2.2.3 (2021-01-12 11:20), 2.2.6 (2021-03-16 20:30), 2.3.0 (2021-04-23 18:50), 2.3.5 (2021-10-25 09:00), 2.3.9 (2022-01-03 12:30), 2.3.10 (2022-01-11 10:02), 2.3.11 (2022-03-28 08:50), 2.4.0 (2023-03-20 23:30), 3.0.2 (2024-01-23 16:12), 3.0.4 (2024-07-01 11:20)
Other packages that cited BuyseTest R package
View BuyseTest citation profile
Other R packages that BuyseTest depends, imports, suggests or enhances
Complete documentation for BuyseTest
Functions, R codes and Examples using the BuyseTest R package
Some associated functions: BuyseMultComp . BuyseTTEM . BuyseTest-package . BuyseTest . BuyseTest.options-class . BuyseTest.options-methods . BuyseTest.options . GPC_cpp . S4BuysePower-class . S4BuysePower-show . S4BuysePower-summary . S4BuyseTest-class . S4BuyseTest-coef . S4BuyseTest-confint . S4BuyseTest-getCount . S4BuyseTest-getIid . S4BuyseTest-getPairScore . S4BuyseTest-getPseudovalue . S4BuyseTest-getSurvival . S4BuyseTest-sensitivity . S4BuyseTest-show . S4BuyseTest-summary . as.data.table.performance . auc . autoplot.sensitivity . boot2pvalue . calcIntegralSurv2_cpp . coef.BuyseTestAuc . coef.BuyseTestBrier . confint.BuyseTestAuc . confint.BuyseTestBrier . constStrata . discreteRoot . dot-calcIntegralCif_cpp . dot-calcIntegralSurv_cpp . dot-colCenter_cpp . dot-colMultiply_cpp . dot-colScale_cpp . dot-information.logit . dot-rowCenter_cpp . dot-rowCumProd_cpp . dot-rowCumSum_cpp . dot-rowMultiply_cpp . dot-rowScale_cpp . dot-score.logit . dot-vcov.logit . iid.BuyseTestAuc . iid.BuyseTestBrier . iid.prodlim . internal-initialization . internal-print . performance . performanceResample . pnormexp . pnormweibull . powerBuyseTest . predict.BuyseTTEM . predict.logit . qnormexp . qnormweibull . simCompetingRisks . simulation . testArgs . validFCTs . 
Some associated R codes: 0-onLoad.R . 1-setGeneric.R . BuyseMultComp.R . BuyseTTEM.R . BuyseTest-Peron.R . BuyseTest-check.R . BuyseTest-inference.R . BuyseTest-initialization.R . BuyseTest-package.R . BuyseTest-print.R . BuyseTest.R . BuyseTest.options.R . PairScore.R . RcppExports.R . S4-BuysePower-show.R . S4-BuysePower-summary.R . S4-BuysePower.R . S4-BuyseTest-coef.R . S4-BuyseTest-confint.R . S4-BuyseTest-get.R . S4-BuyseTest-sensitivity.R . S4-BuyseTest-show.R . S4-BuyseTest-summary.R . S4-BuyseTest.R . S4-BuyseTest.options.R . as.data.table.performance.R . auc.R . autoplot.sensitivity.R . brier.R . constStrata.R . discreteRoot.R . iid.prodlim.R . normexp.R . performance.R . performanceResample.R . powerBuyseTest.R . predict.logit.R . simBuyseTest.R . simCompetingRisks.R . valid.R .  Full BuyseTest package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
LOGANTree  
Tree-Based Models for the Analysis of Log Files from Computer-Based Assessments
Enables researchers to model log-file data from computer-based assessments using machine-learning te ...
Download / Learn more Package Citations See dependency  
Maintainer: Qi Qin (view profile)
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  
dmlalg  
Double Machine Learning Algorithms
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA