Other packages > Find by keyword >

ADLP  

Accident and Development Period Adjusted Linear Pools for Actuarial Stochastic Reserving
View on CRAN: Click here


Download and install ADLP package within the R console
Install from CRAN:
install.packages("ADLP")

Install from Github:
library("remotes")
install_github("cran/ADLP")

Install by package version:
library("remotes")
install_version("ADLP", "0.1.0")



Attach the package and use:
library("ADLP")
Maintained by
Yanfeng Li
[Scholar Profile | Author Map]
All associated links for this package
First Published: 2024-04-18
Latest Update: 2024-04-18
Description:
Loss reserving generally focuses on identifying a single model that can generate superior predictive performance. However, different loss reserving models specialise in capturing different aspects of loss data. This is recognised in practice in the sense that results from different models are often considered, and sometimes combined. For instance, actuaries may take a weighted average of the prediction outcomes from various loss reserving models, often based on subjective assessments. This package allows for the use of a systematic framework to objectively combine (i.e. ensemble) multiple stochastic loss reserving models such that the strengths offered by different models can be utilised effectively. Our framework is developed in Avanzi et al. (2023). Firstly, our criteria model combination considers the full distributional properties of the ensemble and not just the central estimate - which is of particular importance in the reserving context. Secondly, our framework is that it is tailored for the features inherent to reserving data. These include, for instance, accident, development, calendar, and claim maturity effects. Crucially, the relative importance and scarcity of data across accident periods renders the problem distinct from the traditional ensemble techniques in statistical learning. Our framework is illustrated with a complex synthetic dataset. In the results, the optimised ensemble outperforms both (i) traditional model selection strategies, and (ii) an equally weighted ensemble. In particular, the improvement occurs not only with central estimates but also relevant quantiles, such as the 75th percentile of reserves (typically of interest to both insurers and regulators). Reference: Avanzi B, Li Y, Wong B, Xian A (2023) "Ensemble distributional forecasting for insurance loss reserving" <doi:10.48550/arXiv.2206.08541>.
How to cite:
Yanfeng Li (2024). ADLP: Accident and Development Period Adjusted Linear Pools for Actuarial Stochastic Reserving. R package version 0.1.0, https://cran.r-project.org/web/packages/ADLP. Accessed 22 Dec. 2024.
Previous versions and publish date:
No previous versions
Other packages that cited ADLP R package
View ADLP citation profile
Other R packages that ADLP depends, imports, suggests or enhances
Complete documentation for ADLP
Functions, R codes and Examples using the ADLP R package
Full ADLP package functions and examples
Downloads during the last 30 days
Get rewarded with contribution points by helping add
Reviews / comments / questions /suggestions ↴↴↴

Today's Hot Picks in Authors and Packages

wordspace  
Distributional Semantic Models in R
An interactive laboratory for research on distributional semantic models ('DSM', see < ...
Download / Learn more Package Citations See dependency  
Rfast2  
A Collection of Efficient and Extremely Fast R Functions II
A collection of fast statistical and utility functions for data analysis. Functions for regression, ...
Download / Learn more Package Citations See dependency  
composits  
Compositional, Multivariate and Univariate Time Series Outlier Ensemble
A compositional multivariate and univariate time series outlier ensemble.It uses the four R packages ...
Download / Learn more Package Citations See dependency  
tropAlgebra  
Tropical Algebraic Functions
It includes functions like tropical addition, tropical multiplication for vectors and matrices. In t ...
Download / Learn more Package Citations See dependency  
elect  
Estimation of Life Expectancies Using Multi-State Models
Functions to compute state-specific and marginal life expectancies. The computation is based on a fi ...
Download / Learn more Package Citations See dependency  
quickcode  
Quick and Essential 'R' Tricks for Better Scripts
The NOT functions, 'R' tricks and a compilation of some simple quick plus often used 'R' codes to im ...
Download / Learn more Package Citations See dependency  

23,394

R Packages

201,798

Dependencies

63,416

Author Associations

23,395

Publication Badges

© Copyright 2022 - present. All right reserved, rpkg.net.  Based in Cambridge, Massachusetts, USA