predict.list | R Documentation |
Adds estimated values and associated confidence and/or prediction intervals to data based on trending_model fit.
## S3 method for class 'list' predict( object, data, name = "estimate", alpha = 0.05, add_ci = TRUE, ci_names = c("lower_ci", "upper_ci"), add_pi = TRUE, pi_names = c("lower_pi", "upper_pi"), simulate_pi = FALSE, sims = 2000, uncertain = TRUE, ... )
object |
A list of |
data |
A |
name |
Character vector of length one giving the name to use for the calculated estimate. |
alpha |
The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived. |
add_ci |
Should a confidence interval be added to the output. Default TRUE. |
ci_names |
Names to use for the resulting confidence intervals. |
add_pi |
Should a prediction interval be added to the output. Default TRUE. |
pi_names |
Names to use for the resulting prediction intervals. |
simulate_pi |
Should the prediction intervals for glm models be
simulated. If TRUE, default, |
sims |
The number of simulations to run when simulating prediction intervals for a glm model. |
uncertain |
Only used for glm models and when |
... |
Not currently used. |
A trending_predict_tbl
object which is a
tibble
subclass with one row per model and columns:
result: the input data frame with additional estimates and, optionally,
confidence and or prediction intervals. NULL
if the associated
predict
method fails.
warnings: any warnings generated during prediction.
errors: any errors generated during prediction.
Tim Taylor
predict.trending_model()
, predict.trending_fit()
,
predict.trending_fit_tbl()
,
x = rnorm(100, mean = 0) y = rpois(n = 100, lambda = exp(1.5 + 0.5*x)) dat <- data.frame(x = x, y = y) poisson_model <- glm_model(y ~ x , family = "poisson") negbin_model <- glm_nb_model(y ~ x) predict(list(poisson_model, negbin_model), dat) predict(list(pm = poisson_model, nm = negbin_model), dat)