pg.dist | R Documentation |
The function fits a mixed Poisson distribution, in which the random parameter follows Gamma distribution (the negative-binomial distribution). As teh method of estimation Expectation-maximization algorithm is used. In M-step the analytical formulas taken from [Karlis, 2005] are applied.
pg.dist(variable, alpha.start, beta.start, epsylon)
variable |
The count variable. |
alpha.start |
The starting value of the parameter alpha. Default to 1. |
beta.start |
The starting value of the parameter beta. Default to 0.3 |
epsylon |
Default to epsylon = 10^(-8) |
This function provides estimated parameters of the model N|λ \sim Poisson(λ) where λ parameter is also a random variable follows Gamma distribution with hiperparameters α, β. The pdf of Gamma is of the form f_λ(λ)=\frac{λ^{α-1}\exp(-βλ)β^λ}{Γ(α)} .
alpha |
the parameter of mixing Gamma distribution |
beta |
the parameter of mixing Gamma distribution |
theta |
the value 1/beta |
n.iter |
the number of steps in EM algorithm |
Karlis, D. (2005). EM algorithm for mixed Poisson and other discrete distributions. Astin bulletin, 35(01), 3-24.
library(MASS) pGamma1 = pg.dist(variable=quine$Days) print(pGamma1)